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Abstract— The brain must select its control strategies among
an infinite set of possibilities, thereby researchers believe that
it must be solving an optimization problem. While this set
of feasible solutions is infinite and lies in high dimensions,
it is bounded by kinematic, neuromuscular, and anatomical
constraints, within which the brain must select optimal solu-
tions. That is, the set of feasible activations is well structured.
However, to date there is no method to describe and quantify
the structure of these high-dimensional solution spaces, other
than bounding boxes or dimensionality reduction algorithms
that do not capture their full structure. We present a novel
approach based on the well-known Hit-and-Run algorithm in
computational geometry to extract the structure of the feasible
activations that produce 50% of maximal fingertip force. We
use a realistic model of a human index finger with 7 muscles,
4DOF, and 4 output dimensions. For a given force vector
at the endpoint, the feasible activation space is a 3D convex
polytope, embedded in the 7D unit cube. It is known that
explicitly computing the volume of this polytope can become
too computationally complex in many instances. However, our
algorithm was able to produce 1,000,000 random points in
the feasible activation space, which converged to the uniform
distribution. The computed distribution of activation across
each muscle shed light onto the structure of these solution
spaces—rather than simply exploring their maximal and mini-
mal values. Although this paper presents a 7 dimensional case
of the index finger, our methods extend to systems with up to at
least 40 muscles. This will allow our motor control community
to understand the distributions of feasible muscle activations,
which will provide important contextual information into the
learning, optimization and adaptation of motor patterns in
future research.

I. INTRODUCTION

Muscle redundancy is the term used to describe the un-
derdetermined nature of neural control of musculature. The
classical notion of muscle redundancy proposes that, faced
with an infinite number of possible muscle activation patterns
for a given task, the nervous system uses optimization to
select a given specific solution. Here, each of the N muscles
represents a dimension of control, and a muscle activation
pattern is a point in [0,1]N [18]. Thus researchers often seek
to infer the optimization approach and the cost functions the
nervous system likely utilizes to find the points in activation
space to produce natural behavior [2], [12], [13], [16], [4],
[7].

Implicit in these optimization procedures is the notion that
there exists a well structured set of feasible solutions. Thus
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several of us have focused on describing and understanding
those high-dimensional subspaces embedded in [0,1]N [10],
[11], [15], [18], [8].

For the case of muscle redundancy for submaximal and
static force production with a limb, the problem is phrased
as one of computational geometry: find the convex polytope
of feasible muscle activations given the mechanics of the
limb and the constrains of the task [1], [18], [17], [8]. This
convex polytope is called the feasible activation set. To date,
the structure of this high-dimensional polytope is inferred by
its bounding box [10], [15], [8]. But the bounding box of a
convex polytope will always exclude the details of its shape.
Empirical dimensionality-reduction methods have also been
used to calculate a basis vectors for such subspaces [3], [5],
[9]. But those basis vectors only provide a description of the
dimension, orientation, and aspect ratio of the polytope, but
not of its boundaries or internal structure.

Here we present a novel application of the well-known
Hit-and-Run algorithm [14] to describe the internal structure
of these high-dimensional feasible activation sets. We apply
our technique to a schematic example with three muscles to
describe the method, and then use realistic model of an index
finger with seven muscles and four joints [18].

II. METHODS
A. Hit-and-Run algorithm

The boundaries of the convex polytope defining the feasi-
ble activation set are defined by the mechanics of the limb
and the constraints of the task, as is described in Subsection
II-B. The goal of the Hit-and-Run algorithm is to uniformly
sample a convex body [14]. In the case of a schematic
tendon-driven limb with three muscles, the feasible activation
space is the unit cube (as muscles can only be activated
positively from 0 to a maximal normalized value of 1). As
explained in [17], when task constraints are introduced to
the system, the feasible activation set is further reduced;
in this context, a task is a static force vector produced at
the endpoint of the limb, which is represented as a set
of inequality constraints. Thus if this simple limb meets
all constraints, the feasible activation set of the polygon P
contains all feasible activation a ∈ Rn that satisfy

f = Aa,a ∈ [0,1]n,

where f ∈ Rm is a fixed force vector and A = J−T RFo ∈
Rm×n—and where J, R, and Fo are the matrices of the
Jacobian of the limb, the moment arms of the tendons, and
the strengths of the muscles, respectively [18], [17]. P is
bounded by the unit n-cube since all variables ai, i ∈ [n] are



bounded by 0 and 1 from below, above respectively. Consider
the following 1×3 fabricated example, where the task is a
1N unidimensional force.
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a1,a2,a3 ∈ [0,1],

the set of feasible activations is given by the shaded set in
Figure 1.

Fig. 1. The feasible activation set for a three-muscle system meeting one
functional constraint is a polygon in R3. Note that muscle activations are
assumed to be bounded between 0 and 1.

The Hit-and-Run walk on P is defined as follows (it works
analogously for any convex body).

1) Inner Point: Find a given starting point p of P (Figure
2a) .

2) Direction: Generate a random direction from p (uni-
formly at random over all directions) (Figure 2a).

3) Endpoints: Find the intersection points of the random
direction with the edges of the polytope (Figure 2b).

4) New Point: Pick a point uniform at random along the
line segment defined by endpoints (Figure 2c).

5) Repeat from (a) the above steps with the new point as
the starting point .

To find a starting point in

f = Aa,a ∈ [0,1]n,

we only need to find a feasible activation vector. For the
Hit-and-Run algorithm to mix faster, we want the starting
point to be centrally located within the polytope. We use the
following standard trick with slack variables εi.

maximize ∑
n
i=1 εi

subject to f = Aa
ai ∈ [εi,1− εi], ∀i ∈ {1, . . . ,n}
εi ≥ 0, ∀i ∈ {1, . . . ,n}.

(1)
How many points are necessary to reach a uniform

distribution across the polytope? For convex polygons in
higher dimensions (over 40 dimensional), experimental re-
sults suggest that O(n) steps of the Hit-and-Run algorithm
are sufficient. In particular Emiris and Fisikopoulos paper
suggest that (10+ 10

n )n steps are enough to converge upon

Fig. 2. Graphical description of the Hit-and-Run algorithm.

the uniform distribution [6]. In the index finger model
we executed the Hit-and-Run algorithm 1,000,000 times,
selecting only every 100th point.

B. Realistic index finger model

We used our published model in [18] to find matrix
A ∈ R4×7, where a ∈ R7 and the four degrees of freedom
were ad-abduction, flexion-extension at the metacarpopha-
langeal joint, and flexion-extension at the proximal and distal
interphalangeal joints. The force direction we simulated is in
the palmar direction in the posture shown in Figure 3.

Palmar

Fig. 3. The index finger model simulated 50% of maximal force production
in the palmar direction. Adapted from [18].

III. RESULTS

Figure 4 shows the distributions of activations resulting
from 1,000,000 solutions computed with Hit-and-Run sam-
pling. This is the first time (to our knowledge) that the
internal structure of the feasible activation set has been
visualized for a sub-maximal force.
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Fig. 4. We show one histogram for each muscle of the index finger to
illustrate how the muscle is used across all feasible solutions. For this set
of distributions, the task was 50% of maximal force output in the palmar
direction. Muscles are FDP, FDS, EIP, EDC, LUM, DI, and PI are shown
in that order. The orange dotted lines are the lower and upper bounds of
activation.

Notice that the lower and upper bounds of the activations
(i.e., the dashed lines indicating their bounding box), are
unhelpful in determining the actual density distribution of
feasible activations. The activation needed for the maximal
force output (thick gray line) is very often not the mode of
the activations at 50% of output. It’s important to note that
these histograms are unidimensional- they do not illustrate
the between-muscle associations.

IV. DISCUSSION

Our results clearly show that
-The Hit-and-Run algorithm can explore the feasible activa-
tion space for a realistic 7-muscle finger in a way that is
computationally tractable.
-For some muscles, we find that the bounding box excep-
tionally misconstrues the internal structure of the feasible
activation set.
-The Hit-and-Run algorithm is cost-agnostic in the sense
that no cost function is needed to predict the distribution of
muscle activation patterns. Therefore, we can provide spatial
context to where ’optimal’ solutions lie within the solution
space; this approach can be used to explore the consequences
of different cost functions.
-The distribution of muscle activations often show and strong
modes that will critically affect the learning of motor tasks.

If the feasible activation space is skewed or condensed, we
can learn about the statistical tendencies of the musculoskele-
tal system, and better define the plane upon which optimiza-
tion occurs. This application of Hit-and-Run provides a tool
to generate testable hypotheses of how coordination habits
may come about, how they are learned, and how difficult or
easy it is to break out of them.
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