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Abstract Slow and accurate finger and limb movements are essential to daily activ-
ities, but the underlying mechanics is relatively unexplored. Here, we develop a
mathematical framework to examine slow movements of tendon-driven limbs that
are produced by modulating the tendons’ stiffness parameters. Slow limb movements
are driftless in the sense that movement stops when actuations stop. We demonstrate,
in the context of a planar tendon-driven system representing a finger, that the control of
stiffness suffices to produce stable and accurate limb postures and quasi-static (slow)
transitions among them. We prove, however, that stable postures are achievable only
when tendons are pretensioned, i.e., they cannot become slack. Our results further
indicate that a non-smoothness in slow movements arises because the precision with
which individual stiffnesses need to be altered changes substantially throughout the
limb’s motion.
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1 Introduction

Bio-inspired tendon-driven limbs are widely utilized in the development of several
robotics devices, from robot hands and arms, to end effectors for surgical robots (Lee
et al. 1994; Jung et al. 2007; Frecker and Snyder 2005; Simaan et al. 2009). Many
of these mechanisms employ an actuation based on the length change of elastic—
spring-like—tendons, e.g., by using motors that behave like linear springs to generate
movement. Changing the stretched length of elastic tendons generates a force that in
turn creates a torque at the joints. The same force may be produced by changing the
spring constant, or stiffness, of the tendon. Here we propose a computational frame-
work for slow movements of tendon-driven limbs where the controlled parameters are
the tendon stiffness values with a particular resolution.

Accurate and slow limb movements are quasi-static in the sense that the limb
reaches a new state of equilibrium instantaneously in response to the control input.
Here, the limb is neither in a state of fixed equilibrium under constant tendon forces,
nor in a dynamic state with time-dependent tendon forces resisted by inertial accelera-
tions of the limb. Inertial accelerations are negligible for slowly actuated, quasi-static,
limb motions. These slow motions belong to a class of mechanical systems, known
as driftless, where motion stops when actuation stops. Driftless systems arise in many
applications, including satellite dynamics (Teel et al. 1995; Boscain and Chitour 2002),
robotic vehicles (De Luca et al. 1998) and terrestrial and underwater biolocomotion
(Shapere and Wilczek 1989; Kanso et al. 2005; Kanso 2009; Jing and Alben 2013). We
apply these principles to examine the neuromechanical properties of quasi-static limb
movements. A multi-muscle, multi-articular tendon-driven system has an actuation
space (tendon stiffness parameters) with a dimension that is larger than the number of
kinematic degrees of freedom. This is in contrast to most studies on driftless systems
that consider underactuated motions, i.e., fewer actuation parameters than kinematic
degrees of freedom (Kanso et al. 2005; Jing and Alben 2013). It is also unlike most
robotics-type systems that have strictly 2 opposing tendons per kinematic degree of
freedom (Inouye et al. 2012), or analyses that study limb function using rigid body
dynamics driven by torques applied directly at the joints (Hogan 1985; Valero-Cuevas
2015). In tendon-driven limb movement, the forward problem of controlling the stiff-
ness parameters that produce a desired slow limb movement is non-trivial because the
solution is not unique. The rotation of each limb joint does not uniquely determine the
lengths of all tendons crossing it (Valero-Cuevas 2015).

In this paper, we formulate the problem of accurate and slow movements in tendon-
driven limbs as an overactuated (i.e., underdetermined) driftless system, controlled by
changing the tendons’ stiffness parameters. We follow the tradition of simple models
that address the fundamental physics of biological function (see, for example, Srini-
vasan and Ruina 2006; Inouye and Valero-Cuevas 2016). Our mathematical approach
is reminiscent to the rate control method proposed by Whitney 1969. It is also related
to the control of limb impedance, another mathematical formulation well known in
robotics (Hogan 1985). Here, we focus, from a physics and mechanics perspective, on
the range of possible functions given the minimal assumption that muscle stiffness can
be changed. We demonstrate that the control of stiffness suffices to produce stable and
accurate limb postures and quasi-static transitions among them. This is in agreement
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with the results from impedance control. However, we go beyond these results to offer
a proof that stable postures are achievable only when tendons are pretensioned.

Altering tendon stiffness to produce equilibrium limb postures does not admit a
unique solution due to the overactuated nature of the tendon-driven system; thus, the
same posture can be achieved with multiple combinations of stiffness parameter values.
Each combination places the system at a distinct strain energy level. Thus a same
posture may be realized with different levels of strain energy. Therefore, we formulate
the problem of stiffness control as an optimization problem (Ivaldi et al. 1988; Mussa-
Ivaldi and Hogan 1991) that minimizes the strain energy of the limb. Further, we find
that, for constant joint moment arms and tendon pretensioning values, optimal stiffness
values depend on the change in the joint angle but not on the reference posture. This
symmetry with respect to reference postures is broken in the case of posture-dependent
moment arms.

Finally, we investigate the smoothness of quasi-static transitions among limb pos-
tures when the precision with which the stiffness is controlled is not infinitely smooth,
that is to say, when the stiffness parameters are constrained to vary by small but finite
increments. Under such constraints on precision, we observe discontinuities in the
limb’s quasi-static trajectories, indicating the existence of nearby unreachable pos-
tures because of insufficient stiffness precision. We also find that the precision with
which stiffness needs to be controlled depends non-uniformly on the location in the
limb’s workspace.

2 Methods

We examine the slow movements of tendon-driven limbs in the context of a planar
model system of an idealized finger model, see Fig. 1. The extensor mechanism of
fingers is rather complex (Valero-Cuevas et al. 2007). Figure 1b shows a simplified
setup of multi-articular muscles. To emphasize the generality of the mathematical
framework, we consider the general case of a planar limb of n joints and let l1, . . . , ln
be the lengths of the individual limb segments. The limb posture is defined by the
column vector of joint angles θ = (θ1, . . . , θn)T where the superscript ()T denotes the
transpose operator. The joints are driven by m tendons (m > n) of variable stiffness
parameters ki , i = 1, . . . , m, whose tendon paths produce an n × m moment arm
matrix R(θ), see, e.g., Valero-Cuevas (2009), Valero-Cuevas (2015),
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Fig. 1 Finger model: kinematics (a) and muscle routing (b) overlaid on top of the physiological system
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R =
⎛
⎜⎝

r11 r12 · · · r1m
...

...
. . .

...

rn1 rn2 · · · rnm

⎞
⎟⎠ . (1)

Each entry ri j (here, i = 1, . . . c, n, j = 1, . . . c, m) denotes the “rotation” the j th
tendon produces at the i th joint. It is positive when pulling the j th tendon induces a
positive rotation (i.e., counterclockwise rotation per the right-hand rule).

We examine two types of joints: simple hinge joints where the moment arm matrix
R is constant for all values of θ , and non-circular joints where the moment arm matrix
is posture-dependent. In the finger model, the constant moment arm matrix is chosen
to be

R =
(−0.8 −0.8 0.7 0.7

−0.5 0.2 −0.5 0.2

)
, (2)

in length units of cm. These values lie in the range of average moment arm values
for the index finger reported in An et al. (1983) and Valero-Cuevas et al. (1998).
For the posture-dependent moment arms, we define joint ellipses with semimajor and
semiminor axes in the range of measured index moment arms found in An et al. (1983).

A change in limb posture corresponds to a rotation �θ = θ1 −θo of the joints from
a reference limb posture θo to a new limb posture θ1. A rotation �θ fully determines
the length changes �s = (�s1, . . . ,�sm)T of all tendons from their reference length.
The length changes of the tendons are defined—without loss of generality—at the
reference posture of the limb (An et al. 1983; Valero-Cuevas 2015),

�s = −
∫ θ1

θo

(R(θ))T dθ = −RT�θ , (3)

where the negative sign indicates that a positive rotation of the joint will shorten the
tendons that induce it and vice versa.

For constant moment arms, the second equality in (3) is evident. In the case of
posture-dependent moment arms, because we only consider small posture changes
�θ , we use the trapezoid integration rule such that Eq. (3) holds with R =
(R(θo) + R(θ1))/2, where R(θo) and R(θ1) are the moment arm matrices evaluated
at postures θo and θ1, respectively.

We assume that each tendon is elastic and acts as a linear spring whose stiffness
parameter is controlled to produce movement. We also allow each tendon to be pre-
stretched from its resting length by an amount �lo = (�l1, . . . ,�lm)T . Basically,
each tendon has a baseline tension even at its reference length and does not go slack
at any posture.

The total strain energy of the system, E , in the presence of tendon length changes
�s, is then given by

E = 1

2
(�s + �lo)TK(�s + �lo) . (4)

As per the impedance (stiffness) control formulation (Hogan 1984), the stiffness matrix
K is an m × m diagonal matrix of entries ki corresponding to the stiffness of each
muscle i .
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K =
⎛
⎜⎝

k1 . . . 0
...

. . .
...

0 . . . km

⎞
⎟⎠ . (5)

The associated muscle/tendon forces f = ( f1, . . . , fm)T are given by

f = −K(�s + �lo) . (6)

These tendon forces, in turn, produce torques τ = (τ1, . . . , τn)T at the joints defined
by τ = Rf .

A stable posture is achieved by satisfying the static equilibrium condition at the
joints; namely, the total torque at each joint must be zero,

τ + φ(θ) = 0 , (7)

where φ(θ) = (φ1, . . . , φn)T denotes externally applied torques, such as gravity-
induced torques at the joints of larger limbs. Slow, i.e., quasi-static, limb movements
are achieved by sequentially satisfying this static equilibrium at each posture. It should
be noted that the equilibrium condition means that the strain energy E is at a local
minimum. That is to say, Eq. (7) is equivalent to being at a local minimum of the strain
energy paraboloid described by Eq. (4). However, a posture can be at equilibrium at
different energy levels. One has, at each posture, an admissible family of strain energy
paraboloids, achievable at different combinations of spring stiffness K and excursion
lengths �s. Figure 2 illustrates this concept schematically.
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Fig. 2 A sketch of the static equilibrium and energy optimization problem: For each sample posture, the
static equilibrium condition can be satisfied at various combinations of stiffness values, corresponding to
the minimum of each of many energy paraboloids. The optimization problem is solved by choosing the
stiffness combination that minimizes the strain energy. The green plane is an example of the set of possible
postures, and the blue surface represents a schematic illustration of the minimum strain energy manifold
over this range of postures (Color figure online)
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In the absence of external loading (for φ = 0), and if the tendons are not preten-
sioned (�lo = 0), substituting (3) and (6) into Rf = 0 gives

RKRT �θ = 0 , (8)

which only admits the trivial solution �θ = 0 for allK because the n×n square matrix
RKRT is full rank when R is full row rank. Thus, there exists only one trivial solution
at the reference posture, and other stable postures are not achievable by varying K. In
contrast, when the tendons are pretensioned, one has

− RK(−RT �θ + �lo) = 0 . (9)

The system is thus unconditionally controllable, and equilibrium postures are achiev-
able by proper choice of stiffness K.

More generally, when the limb is subject to external load [nonzero φ(θ)], the equi-
librium condition (7) takes the form RKRT (�θ + �lo) + φ(θ) = 0. Here, in the
absence of muscle pretensioning (�lo = 0), for each posture, i.e., for each value of
θ , one has one and only one solution �θ where the internal tendon-driven torques
equal the external torques. This same posture can be achieved at various levels of
muscle co-contraction, i.e., various values of K, satisfying the equilibrium condition.
However, posture controllability is limited to the solution of this equality. In contrast,
when the tendons are pretensioned (�lo �= 0), the system is again unconditionally
controllable by proper choice of stiffness parameters K. Since the external load φ(θ)

does not qualitatively affect the system controllability, we hereafter set φ to zero to
model a limb with no external load and low inertia such as a finger.

It should be noted here that our work relates to the situation where muscle stiffness
is arbitrarily controlled, where even if a joint rotation lengthens a muscle, the nervous
system can command that muscle to reduce or increase its stiffness. Mathematically
speaking, for a given reference posture and pretensioning level �lo, there exist several
combinations of stiffnessK that satisfy the static equilibrium condition. We choose the
pretensioning values �lo to ensure that the tendons are nowhere slack in the workspace.
Thus, equilibrium postures θ can be computed without imposing additional restrictions
on �lo.

Our quasi-static formulation implies that, starting from a given initial posture, the
limb has to transition to “nearby” equilibrium postures, that is to say, �θ must be
small. A large value of �θ means that the limb would instantaneously jump from its
current posture to a far away equilibrium posture, which violates the slow movement
assumption. Therefore, in all subsequent analyses, we consider quasi-static transitions
to only nearby postures. In particular, we formulate: (1) an optimality problem where
for a given equilibrium posture θ , we solve for optimal stiffness values that mini-
mize the strain energy function associated with transitions to nearby postures, and
(2) a reachability problem where we explore reachable equilibrium postures for given
stiffness values.
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2.1 Optimal Equilibrium Postures

Starting at a posture θo, a desired limb posture θ near θo can be achieved by tuning
the tendon stiffness parameters so that the vector (−RT �θ + �lo) in Eq. (9) lies in
the null space of the n × m matrix RK. The resulting stiffness values are not unique,
in general. For each limb posture θ , Eq. (9) yields a family of solutions K, at multiple
strain energy levels, for which θ is achievable (Fig. 2). This redundancy leads us to
look for optimal stiffness values Kopt that minimize the strain energy function while
satisfying the equilibrium constraint and inequality constraints on permissible stiffness
values, namely,

min
K

[
E = 1

2
(−RT �θ + �lo)TK(−RT �θ + �lo)

]

subject to − RK
(
−RT �θ + �lo

)
+ φ(θ) = 0 ,

and kmin ≤ ki ≤ kmax,

kmin > 0 .

(10)

where we set φ(θ) = 0 in the finger model and define practical limits on the values of
the stiffnesses ki . This optimization problem is linear in the sense that the strain energy
(cost) function and the constraints are all linear in K. This suggests the possibility
of degenerate minima if either the strain energy or constraints functions are linearly
dependent. We posit that this is an unlikely design in biological and man-made systems;
the numerical results presented in this study are not degenerate.

2.2 Reachable Equilibrium Postures

Given a specific combination of stiffness parameters K, the achievable equilibrium
posture θ can be found by solving the “forward problem” in (9), which we rewrite as
RKRT �θ = RK�lo. That is, given an initial posture θo and muscle stiffness K, we
compute a new posture θ = θo +�θ that satisfies the equilibrium condition (7). Given
that the matrix RKRT is invertible, solutions to this forward problem are unique: For
each K, there exists one and only one �θ , which in turn gives a uniquely defined
new equilibrium posture θ . While the new posture θ is at equilibrium in the sense
that it corresponds to a local minimum of the strain energy paraboloid E , it does not
necessarily correspond to the minimum of all possible energy levels. That is to say,
no particular effort is made here to ensure optimality of the equilibrium postures. But
as in the optimality problem, we only examine small changes of equilibrium posture
�θ . We systematically sample the stiffness space at different precision levels, i.e.,
degrees of discretization granularity �k. For each precision level �k, we calculate the
set of admissible departures �θ from a reference posture and consequently the set of
reachable (feasible) postures θ . The goal here is not to minimize the strain energy at
each reachable posture because the forward problem (computing �θ given K) admits
a unique solution. Rather, our goal is to find the set of all nearby reachable postures
as a function of the precision with which individual stiffnesses can be controlled.
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initial pre-tensioningtendon slack length

lengthened
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new pre-tensioning

initial posture 
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posture change

new 
initial posture

initial pre-tensioningtendon slack length

new pre-tensioning

shortened
amount

(a) (b)tendon lengthening tendon shortening

Fig. 3 Variable pretensioning update rule: The pretensioning is history-dependent, taking into account the
tendon’s lengthening (a) or shortening (b) that took place in the previous posture change

2.3 Parameter Values

A few remarks on the parameter values of kmin and kmax are in order here. kmin is
always greater than zero ensuring that the optimization problem is well posed. Here,
we choose a range of stiffness values kmin = 100 to kmax = 1000 N/m, in agreement
with experimental data that measured stiffness in a variety of muscles ranging from
those that actuate a finger to those of a leg (Rätsep and Asser 2011; Chuang et al. 2012;
Bizzini and Mannion 2003; Mustalampi et al. 2013). We now non-dimensionalize
all parameters using a characteristic length scale l∗ = 10 cm and a characteristic
force f ∗ = 100 N. Non-dimensional parameters enable us to obtain generic results,
which we can later easily scale up or scale down to different limb sizes. Using the
characteristic length and force scales, the dimensionless range of stiffness values is
kmin = 0.1 to kmax = 1—making �k = 0.05 equal to 5 % of the range. The normalized
values of the pre-stretched lengths �li are all set to 0.1 in the finger model. Note that
in addition to constant pre-stretch, we consider pre-stretched lengths that vary with
posture.

2.4 Pretensioning of the Tendons

We investigate the effect of constant versus variable tendon pretensioning. Constant
pretensioning means that the system is “memoryless” and resets to the initial �lo
because pretensioning does not depend on the previous tendon lengths. Variable
pretensioning is defined according to the update rule depicted in Fig. 3, where the
pretensioning value at each posture is equal to that at the previous posture plus the
cumulative change in tendon length that occurred as a result of moving from the
previous to the current posture; thus, the pretensioning has “memory.”

2.5 Workspace of the Finger Endpoint

We now focus on the finger model presented in Fig. 1. Given θ = (θ1, θ2)
T , the finger’s

posture in the (x, y)-plane follows in a straightforward way

xw = l1 cos θ1 + l2 cos(θ2 − θ1), yw = l1 sin θ1 + l2 sin(θ2 − θ1). (11)
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Fig. 4 Finger model: a configuration space and b the corresponding endpoint space which deforms the
squares into “diamonds”

The finger workspace W is the set of all points (xw, yw) of the (x, y)-plane accessible
by the finger’s endpoint for all admissible θ1 and θ2. A depiction of the joint angles
space and the workspace of the finger model is shown in Fig. 4. Here, the admissible
joint angles are taken to lie in the range θ1 ∈ [−80◦, 10◦], θ2 ∈ [0◦, 90◦]. Initial
postures θo in this admissible range are discretized using a 9 × 9 regular grid, marked
by ×. For each θo, we explore optimal transitions to equilibrium postures in a small
square neighborhood centered at θo and of side length 10◦. More specifically, we
consider a total of nine nearby equilibrium postures, including staying at the initial
posture θo. We compute the optimal stiffness values for the change in joint angles
�θ associated with a transition from the initial posture to each of these nine postures.
We linearly interpolate these values in the neighborhood of each initial posture to
construct a complete map of optimal stiffness values.

2.6 Quasi-Static Trajectories of the Finger

We consider quasi-static trajectories where the finger endpoint is required to slowly
trace, back and forth, curved and straight lines in the workspace as depicted in Fig. 5.
We solve for the optimal stiffness combinations required by the limb to perform this
back and forth motion. To this end, the quasi-static trajectories are discretized, and the
optimization problem in Eq. (10) is solved sequentially along the discrete trajectory.

2.7 Reachable Sets in the Finger Workspace

We discretize the range of stiffness values from kmin to kmax using constant increments
�k, producing M = (kmax − kmin)/�k + 1 discrete stiffness values for each tendon.
For m tendons, this discretization generates Mm different stiffness matrices K, which
amounts essentially to a uniform sampling of the m-dimensional stiffness space. For
example, setting �k = 0.05 in the finger model amounts to 194 distinct K matrices.
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(a)

(b)

Fig. 5 Endpoint trajectories for the finger model: Finger endpoint is required to trace a a curved trajectory,
b a straight line. Subfigures depict the prescribed values of (xw, yw) and associated (θ1, θ2) and (�θ1, �θ2)

For each K, we solve Eq. (9) to compute �θ starting from a reference posture θo and
use (11) to compute the reachable endpoint location (xw, yw). We constrain the full
set of Mm reachable points to those that are in the vicinity of the reference posture.

3 Results

3.1 Quasi-Static Trajectories

Figure 6 depicts the optimal stiffness values for the finger model tracing the trajectories
of Fig. 5a, b for all combinations of moment arms and pretensioning scenarios. The
optimal stiffness values are characterized by a local jump as the limb reverses its
motion to trace the trajectory backward. The jump in the stiffness of certain tendons
gets attenuated in the case of variable moment arms, but all jumps get smoothed out
completely when the pretensioning is changing continuously with posture. In these
cases, one observes the relaxation of the some tendons during the activity of the
opposing tendons, and the opposite effect is clearly seen during the return portion of
the movement.

3.2 Optimal Equilibrium Postures over the Whole Workspace

Figure 7 depicts the optimal stiffness values Kopt for the finger model with constant
moment arms R and constant pretensioning �lo over the whole workspace. Note that
the workspace is discretized as depicted in Fig. 4 and described in the previous section.
Tendons m2 and m4 exhibit higher stiffness values than m1 or m3. A closer look at
the stiffness variation within each neighborhood shows that, in the context of constant
moment arms, all neighborhoods are identical, that is to say, optimal stiffness values
depend only on the change in joint angles �θ , or posture change, and not on the initial

123



J Nonlinear Sci

% trajectory
080 20 40 60 100

% trajectory
080 20 40 60 100

% trajectory
080 20 40 60 100

% trajectory
080 20 40 60 100

% trajectory
080 20 40 60 100

% trajectory
080 20 40 60 100

% trajectory
080

st
iff

ne
ss

20 40 60 100

0.1
0.2
0.3
0.4
0.5
0.6
0.7

% trajectory
080

st
iff

ne
ss

20 40 60 100

0.1
0.2
0.3
0.4
0.5
0.6
0.7

m
1m
2m
3m
4

(b)

(a) constant Δl0 and R posture-dependent R posture-dependent Δl0 posture-dependent Δl0 and R

m
1m
2m
3m
4

Fig. 6 Finger model: optimal stiffness values for the quasi-static trajectories shown in Fig. 5a, b. Please
note that, for quasi-static movements lasting multiple seconds, the delay in excitation–contraction dynamics
(c. 35 ms) should not be a limiting factor to the need for large changes in muscle stiffness
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Fig. 7 Finger model with constant moment arms: optimal stiffness parameters needed to achieve each
posture in a configuration (joint angle) space and b endpoint space. The plots show the stiffness levels of
each tendon mi , i = 1, . . . , 4, that minimize the strain energy function

posture. Further, the stiffness variation within each neighborhood is such that m2 and
m4 counterbalance each other in the θ1-direction—as the stiffness of m2 increases,
that of m4 decreases and vice versa.

Figure 8 depicts the optimal stiffness values for the case when the moment arms
vary with joint angles. As in the case of constant moment arms, m2 and m4 require
higher stiffness values, and the neighborhood around each initial posture indicates that
each tendon has a “preferred” direction of higher stiffness, which is the same as in
Fig. 7. However, the optimal stiffness values now depend on moment arms and thus
on initial posture. Interestingly, the stiffness variation across the whole workspace is
also characterized by m2 and m4 counterbalancing each other, indicating an obligatory
covariation in the way this pair of muscles acts in transitions to nearby equilibrium
postures and to postures across the whole workspace.
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Fig. 9 Finger model: achievable versus desired trajectories overlaid on top of the reachable postures. The
level of stiffness precision affects the reachability. As precision increases (from left to right), the endpoint
trajectories become smoother and closer to the desired trajectories. Discontinuities in the set of reachable
points vary nonlinearly in the workspace, e.g., regions highlighted in red (Color figure online)

3.3 Reachable Equilibrium Postures

We explore the reachability or feasibility of tracing certain trajectories within the limb’s
workspace given constraints on the precision in the control of stiffness. For illustration
purposes, we investigate the ability of the finger model to trace multiple trajectories
for a given �k. Starting from the initial posture, we sequentially transition to the
next point along the trajectory by locating the nearest admissible reachable posture.
Figure 9 shows the desired versus reachable endpoint trajectories for three precision
levels �k = 0.1, 0.08, 0.05, superimposed on the set of all reachable points in the limb
workspace. The reachable paths show discontinuities. These discontinuities decrease
as the resolution of stiffness increases, going from �k = 0.1 and �k = 0.05, and
eventually disappear as k is varied continuously. The discontinuous behavior arises
from unreachable nearby desired postures along the discretized path, in which case
the limb settles at the nearest admissible posture from the set of reachable nearby pos-
tures. Further, we observe that discontinuities exhibit a nonlinear structure in the limb
workspace, implying that the demands on the precision in stiffness vary nonlinearly
in space.
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4 Discussion

We developed a novel mathematical formulation for slow and accurate tendon-driven
limb movements using the framework of driftless mechanical systems where move-
ment is generated by controlling the tendons’ stiffness parameters. We used this
framework to address three questions in slow limb movements: (1) Can slow limb
movements be achieved by modulating the stiffness parameters only? (2) what is the
role of pretensioning? and (3) how are these movements affected by limits on the pre-
cision with which stiffness can be controlled? We demonstrated that stiffness control
is sufficient to produce accurate and slow limb movements, but only when the tendons
are pre-stretched. We then probed the limb’s ability to trace prescribed trajectories.
When the moment arm R or muscle pretensioning �lo are held constant, the stiffness
values required to track the prescribed trajectories are characterized by sharp “kinks”
or discontinuities, which get smoothed out for posture-dependent R and �lo.

We analyzed the reachability of the limb’s workspace by exploring the limb’s ability
to trace prescribed trajectories under constraints on stiffness precision. Here, we did
not impose any restriction on the strain energy level. By comparing different levels of
precision (i.e., resolution) to control stiffness, we found that high resolution of stiffness
is key for the limb to improve its accuracy in tracking a trajectory. More specifically,
we identified discontinuous patterns in the limb workspace at low muscle precision
that almost disappeared at higher precision. Our results also revealed that the required
stiffness resolution is not uniform throughout the limb’s workspace in the sense that
lower muscle resolutions induce discontinuities that are non-uniform and are localized
to certain regions of the workspace.

In addition to their direct relevance to understanding the necessary conditions and
limitations of bio-inspired, tendon-driven robotic limbs, our results bear relevance to
the neural control of movement. In that literature, slow limb movements are, to our
knowledge, not addressed. Limb movements in general have at times been considered
from the perspectives of impedance control, force-field primitives, spinal feedback
systems (Giszter et al. 2007; Giszter 2015), or the framework of the equilibrium point
hypothesis (EPH), which states that limb movements are generated by a sequence of
equilibrium points along a desired trajectory (Asatryan and Feldman 1965; Feldman
and Levin 2009; Cooke 1980). Our mathematical formulation is reminiscent of but
not identical to these approaches. EPH, for example, considers that the magnitude
of the “control” force exerted on the limb, at any time, depends on the difference
between the “actual” limb dynamics and the desired equilibrium point, and derives
a second-order differential equation for the “error” between the actual and desired
dynamics (Shadmehr 1998; Asatryan and Feldman 1965; Feldman 1966). Here, we
were not concerned with the relaxation dynamics. Our working hypothesis is that
this relaxation timescale is much faster than the timescale associated with slow limb
movements, and the limb reaches a state of equilibrium instantaneously in response to
changes in muscle stiffness. Our formulation focused on determining whether equi-
librium postures of multi-joint limbs and quasi-static transitions among them can be
achieved by direct control of muscle stiffness values and the effect of stiffness resolu-
tion on achievable postures.
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The direct control of muscle stiffnesses can be viewed as an abstraction, or “meta-
model,” of muscle control. While the fact that muscles have stiffness (and strain
energy)—and that the nervous system can regulate them—is well established (e.g.,
Mussa-Ivaldi and Hogan 1991; Burdet et al. 2000, 2001), our main goal was to present
a general mathematical framework for analyzing slow limb movements that arise from
the control of muscle stiffness, rather than to focus on the details of the production and
control of muscle stiffness. In addition, our use of high- and low-resolution regulation
of stiffness is not meant to indicate a discontinuity in the time history of the neural
control signal. Rather, it is simply a means to indicate a lack of accuracy in the produc-
tion of a given level of muscle stiffness at a given posture. Signal-dependent noise and
motor unit recruitment and rate coding are well-known sources of such inaccuracies
and high-frequency variability.

Experimental work on muscle force has shown that if a muscle is clamped at a
constant length and stimulated (an isometric contraction), its active force depends
on the length in a non-monotonic way, with lower force at short or long lengths
and a maximum force at some length in between. This effect is called the force–
length relationship. Importantly, the force–length relationship is not like a Hook’s
law for muscle (i.e., a stress vs. strain relationship). It simply represents the amount
of active isometric contractile force a muscle can produce at a given length but not
directly its passive stiffness. In addition, if a muscle is allowed to shorten (a concentric
contraction), the force will also depend on the shortening speed, decreasing as the
shortening speed gets higher. If the muscle is lengthened by some external force,
even as it produces force to resist the lengthening (an eccentric contraction), the active
force increases above the isometric value (McMahon 1984; Chen et al. 2011). Together,
these effects are called the force–velocity relationship and can be modeled succinctly
as done in Hill (1938) and Williams (2010) using a mathematical product of these two
effects and an activation function. Given that our study is concerned with slow limb
movements, one can reasonably argue that the shortening velocity is slow and can be
considered a constant. An interesting outcome of our formulation is that, although we
use a spring model for the muscles, the muscle forces required to trace a trajectory
are not necessarily linear. Indeed, a re-drawing of the muscle stiffnesses ki reported in
Fig. 6 as functions of the joint angles and thus of muscle lengths would reveal a highly
nonlinear dependence of ki on the change in muscle length �si . A detailed analysis
of this non-linearity, as well as how to incorporate the Hill-type force model into our
formulation, will be the topic of future work.

Another future direction is to investigate the similarities between the discontinuities
observed in Fig. 9 and the discontinuous nature of slow finger movements reported
in numerous experimental studies (Vallbo and Wessberg 1993; Darling et al. 1994).
Several studies attributed these discontinuities to neural sources, while others held
responsible peripheral stretch reflexes (Gross et al. 2002; Williams et al. 2009; Evans
and Baker 2003. Our formulation offers a novel framework that can be used in con-
junction with further experimentation to decipher the origins of these discontinuities
and their dependence on the nature and integrity of the neural control of musculature
in health and disease.

Most importantly, this work serves to define the neuromechanical boundary con-
ditions that make slow movements possible and effective. We establish the physical
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nature of slow limb movements in the context of changes in strain energy, regard-
less of the physiological mechanisms that bring this about. Our two main results,
in particular, serve to direct future research. First, we establish that pretension-
ing of muscles is necessary to produce slow movements. Second, there are real
mechanical consequences to the quality of the movement that depend directly
on the resolution with which muscle stiffness (or strain energy) is controlled.
Together these results may begin to explain the evolutionary pressures that drove
the development of the spinal circuitry and mechanisms needed for regulating mus-
cle tone in vertebrates and for the orderly recruitment and rate coding of muscle
fibers.
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