An α -MN collateral to γ -MNs can mitigate velocity-dependent stretch reflexes during voluntary movement: A computational study

Grace Niyo¹, Lama I Almofeez¹, Andrew Erwin^{2,3}, Francisco J Valero-Cuevas^{1,2,‡,*}

1 Biomedical Engineering Department, University of Southern California, Los Angeles, CA, USA

2 Biokinesiology and Physical Therapy Department, University of Southern California, Los Angeles, CA, USA

3 Mechanical and Materials Engineering Department, University of Cincinnati, Cincinnati, OH, USA

‡Senior author. * valero@usc.edu

Keywords: Alpha, gamma, beta motoneurones, motoneurons, neuromuscular control, computational neuroscience, neural control of movement, muscle spindles, muscle afferentation, neuromechanics, collateral projections, spinal cord

Abstract

The primary motor cortex does not uniquely or directly produce α -MN drive to muscles during voluntary movement. Rather, α -MN drive emerges from the synthesis and competition among excitatory and inhibitory inputs from multiple descending tracts, spinal interneurons, sensory inputs, and proprioceptive afferents. One such fundamental input is velocity-dependent stretch reflexes in lengthening (antagonist) muscles, which are thought to be inhibited by the shortening (agonist) muscles. It remains an open question, however, the extent to which velocity-dependent stretch reflexes disrupt voluntary movement, and whether and how they are inhibited in limbs with numerous monoand multi-articular muscles where agonist and antagonist roles become unclear and can switch during a movement. We used a computational model of a *Rhesus Macaque* arm to simulate movements with feedforward α -MN commands only, and with added velocity-dependent stretch reflex feedback. We found that velocity-dependent stretch reflex caused movement-specific, typically large and variable disruptions to the arm endpoint trajectories. In contrast, these disruptions became small when the velocity-dependent stretch reflexes were simply scaled by the α -MN drive to each muscle (equivalent to an α -MN excitatory collateral to its homologous γ -MNs, but distinct from $\alpha - \gamma$ co-activation). We argue this circuitry is more neuroanatomically tenable, generalizable, and scalable than $\alpha - \gamma$ co-activation or movement-specific reciprocal inhibition. We propose that this mechanism at the homologous propriospinal level, by locally and automatically regulating the highly nonlinear neuro-musculo-skeletal mechanics of the limb, could be a critical low-level enabler of learning, adaptation, and performance via cerebellar and cortical mechanisms.

Significance

The problem of muscle afferentiation has long been an unsolved problem, and a foundation of voluntary motor control. How unmodulated velocity-dependent stretch reflexes disrupt voluntary movement and how they should be inhibited in limbs with numerous mono- and multi-articular muscles remain unclear. Here we demonstrate the cost of unregulated velocity-dependent reflexes, and propose a low-level propriospinal mechanism that can regularize these errors and enables motor learning and performance. Our results suggest that this spinal level mechanism of scaling dynamic γ -MN by the homologous α -MN collateral provides a generalizable mechanism that could be a low-level enabler of accurate and predictable movements that locally stabilizes and complements the synthesis and competition among cortical, subcortical or propriospinal projections to α -MN pools

Introduction

Muscle spindle afferent signals contribute to the proprioceptive feedback signals that are important for kinesthesia, posture, balance [1–3], muscle tone [4], and control of voluntary movement [2,5]. The monosynaptic stretch reflex

1/19

1

2

loop includes muscle spindles and their associated Ia and II afferent sensory neurons, which sense muscle fiber velocity and length. Additionally, it involves fusimotor $\gamma_{dynamic}$ and γ_{static} motoneurons that innervate intrafusal muscle fibers, regulating muscle spindle sensitivity [6–8]. It is often suggested that dysregulation of the monosynaptic stretch reflex loop is responsible for movement disorders such as hyperreflexia, spasticity, dystonia, etc. [9, 10]. However, the regulation and contribution of this fusimotor system to voluntary movements and movement pathologies remain debatable [10].

Understanding the fusimotor system has been difficult due to the experimental challenges of recording from $\gamma_{dynamic}$ and γ_{static} motoneurones in behaving animals and humans [11–16]. As a result of these difficulties, muscle spindle afferent signals are most commonly studied and described for single-joint systems with clear agonist-antagonist muscle pairs (figure 35-5 in [17, 18]).

Importantly, the velocity-dependent Ia signal can—if not regulated or inhibited—be considered a form of 'internal perturbation' where stretch reflexes in eccentrically contracting (i.e., antagonist) muscles can disrupt or stop joint rotations induced by the concentrically contracting muscles [4, 8, 19, 20]—and compromise movement accuracy. It is in this context that Sherrington mentioned that 'Inhibition is as important as excitation' [4]: in single-joint movements driven by an agonist-antagonist muscle pair, reciprocal inhibition of the antagonist α -MNs provided by Ia inhibitory interneuron mitigate the disruption of voluntary movements [18,21]. However, this simplified conceptual framework for reciprocal inhibition is difficult to extend and generalize to limbs driven by numerous multi-articular muscles where the roles of agonist and antagonist become unclear and can change during the movement [19, 20, 22, 23].

In this study, we apply first principles to address two issues. First, in what ways do positive homologous muscle velocity feedback (i.e., velocity-dependent stretch reflexes) perturb limb movements in the general case of numerous multi-articular muscles? And second, would spinal modulation of velocity-dependent stretch reflex gains—in the spirit of Sherrington—mitigate these disruptions?

We find that unmodulated, physiologically tenable monosynaptic velocity-dependent stretch reflexes do, in fact, disrupt voluntary movements in significant, variable and task-specific ways. However, scaling the stretch reflex gain by (i) the level of the postsynaptic homologous α -MN drive or (ii) pre-synaptic $\alpha - \gamma$ co-activation greatly reduces disruptions for most, but not all, voluntary movements.

Methods

Open-loop simulation of arm movements without feedback

We created 1,100 open-loop three-dimensional arm movements of a Rhesus Macaque (Macaca mulatta) arm model, 32 each lasting two seconds with a 2000 sampling rate. The model was adapted from the SIMM (Musculographics Inc) 33 model developed by Moran et al. [24] into a MuJoCo model (Multi-Joint dynamics with Contact) by first loading 34 the SIMM model into an OpenSim (Open Source Simulation and Modeling) model [25] and then converting the 35 OpenSim model into MuJoCo [26]. While the original model has 38 muscles and 7 degrees of freedom (DoF), we 36 excluded hand muscles and fixed the wrist joint as they are unnecessary for the simulated upper arm movements. 37 The adapted MuJoCo model is shown in (Fig.1C) with the same body segment lengths, joints, and tendon routing as 38 the original model, 25 muscles and 5 DoF (shoulder abduction/adduction, shoulder flexion/extension, shoulder 39 rotation, elbow flexion/extension, and forelimb pronation/supination). The musclotendon model is a Hill-type with 40 inelastic tendons [27] and the same muscle force parameters, tendon slack lengths as in the original model. During 41 open-loop simulations, each of the 25 Hill-type muscles was controlled by a single α -MN drive. Each muscle received 42 a feed-forward α -MN drive signal (Fig.1A), whose level could vary from 0 to 1, which we refer to as 0% to 100% 43 muscle activity. The feed-forward α -MN drives were created as a beta probability density function to generate beta 44 shapes which then were scaled and transformed into ramp signals that for five randomly-selected muscles reached 45 60% of maximum, while the remaining 20 muscles reached only 4% of maximum muscle activity (Fig.1B). This 46 distribution of high and low activations mitigated co-contraction and enabled both small and large arm movements 47 with maximal endpoint displacements ranging 5.178 cm to 6.872 cm that spanned the full workspace of the 47.35 cm48 length arm model(S1 Fig). The trajectory of the endpoint (distal head of the third metacarpal) of the open-loop arm 49 movements served as reference endpoint trajectories (Fig.1C) for computing deviations of the endpoint trajectory of 50 arm movement with velocity-dependent stretch reflex feedback from the open-loop endpoint trajectories. 51

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Fig 1. Sample time history of open-loop α -motoneuron activations to muscles to produce endpoint trajectory (case 5 out of 1,100). B) For each open-loop movement, five randomly-selected muscles were activated from zero to 60% of maximum following a random ramp-shaped activation profile, while the remaining 20 muscles reached only 4% of maximum in a similar way (inset) to prevent excessive co-contraction and enable large movements throughout the workspace of the limb. C) The ensuing reflex-free reference trajectory of the endpoint (distal head of the third metacarpal) for the sample activations in B is shown (black trace) from the initial position (red dot) to the terminal position (black dot).

Closed-loop simulation of arm movements with velocity-dependent stretch feedback

Excitatory velocity-dependent (Ia afferent) stretch reflexes from muscle spindles form feedback loops to homologous 53 alpha-motoneurons of the extrafusal muscle via spinal pathways [18]. We added a simple muscle spindle model to each 54 of the 25 Hill-type muscles of the macaque arm. The model takes muscles velocity input and generates Ia afferent as 55 positive muscle velocity (i.e., velocity-dependent stretch reflex) output. For each of the 1,100 arm movements, we 56 performed closed-loop simulations of the movement with the velocity-dependent stretch reflex feedback of different 57 reflex gain k from 1 to 10. We show these gains are physiologically tenable by computing peak change in muscle 58 activation caused by the velocity-dependent (Ia afferent) stretch reflex feedback and compare them to reflexes elicited 59 in human arms (up to 40% MVC reflex EMG) during interactions with destabilizing environments [28]. A schematic 60 overview of the closed-loop simulation of movements with velocity-dependent stretch reflex feedback is shown in 61 figure 2. The α -drive of each muscle received the same feedforward α -MN drive as during the open-loop simulation. At 62 each simulation time step, the muscle spindle generated the velocity-dependent stretch reflex feedback $(k^* v_{stretch})$ 63 modulated at gain k to the homologous α -drive. The muscle activation was computed as follows: 64

$$a_m(t) = a_{ref}(t) + k * v_{stretch}(t) \tag{1}$$

Where $a_{ref}(t)$ refers the feedforward α -MN drive at time t and $v_{stretch}$ is positive muscle velocity v_m for lengthening muscles and zero for shortening or isometrically contracting muscles.

Fig 2. Schematic view of the closed-loop simulation of movements with velocity-dependent stretch reflex feedback. During closed-loop simulation, the feedforward α -MN drive was the same as the feedforward α -MN drive of open-loop arm movements (Fig.1A) for both unmodulated reflex gain (A) and reflex gain proportional to the α -drive (B). The muscle spindle of each muscle received the muscle velocity (Vm) as input and generated the stretch velocity of the muscle $(V_{stretch})$ as positive muscle velocity for when the muscle was lengthening or zero for when shortening (i.e., negative velocity) or isometrically contracting. For the unmodulated reflex gain (A), the muscle stretch velocity was multiplied by a reflex gain k to produce the velocity-dependent stretch reflex feedback $(k^*V_{stretch})$, while in (B), the reflex gain was simply scaled to the α -drive (red bold arrow) to produce velocity-dependent stretch reflex feedback with reflex gains proportional to the muscle's α -drive $(k^*V_{stretch}*\alpha$ -drive). Each closed-loop simulation was simulated for all 1,100 arm movements at reflex gain k values from 1 to 10 in steps of 1. Examples of endpoint trajectories of arm movements for unmodulated reflex gains

and reflex gains proportional to the α -drive are shown in Fig.3& Fig.4 We scaled the stretch reflex gain k to the α -drive of the muscle (fig.2B) to investigate how the disruption in the

endpoint trajectories change when the stretch reflex gain is proportional to the ongoing muscle activation signal. In this closed-loop simulation the muscle activation was computation using the following equations:

$$a_m(t) = a_{ref}(t) * (1 + k * v_{stretch}(t))$$

$$\tag{2}$$

Similar to open-loop simulations, we recorded trajectories of the endpoint at each gain k and computed deviation in the movement trajectory (i.e., cumulative residual, CR) and deviation in of terminal position (i.e., terminal error, TE) of the endpoint trajectories from their reference endpoint trajectory of the open-loop arm movement. CR is the mean of the Euclidean deviations in the movement trajectory (Eq.3) and TE is the deviation of the terminal position of the endpoint Eq.4.

$$RE = \frac{\sum_{t=0}^{2} \sqrt{(x(t)_{\alpha} - x(t)_{\alpha+Ia})^2 + (y(t)_{\alpha} - y(t)_{\alpha+Ia})^2 + (z(t)_{\alpha} - z(t)_{\alpha+Ia})^2}}{N}$$
(3)

$$TE = \sqrt{(x(t_f)_{\alpha} - x(t_f)_{\alpha+Ia})^2 + (y(t_f)_{\alpha} - y(t_f)_{\alpha+Ia})^2 + (z(t_f)_{\alpha} - z(t_f)_{\alpha+Ia})^2}$$
(4)

The x,y,z positions of the endpoint for open-loop arm movements (i.e., movements without feedback) are $x(t_f)_{\alpha}$, 75 $y(t_f)_{\alpha}$, $z(t_f)_{\alpha}$ and $x(t_f)_{\alpha+Ia}$, $y(t_f)_{\alpha+Ia}$, $z(t_f)_{\alpha+Ia}$ are x, y, and z positions of movement with velocity-dependent (Ia 76 afferent) feedback for a specified reflex gain k, and N is the the number of samples. The magnitude of the disruption of 77 the arm endpoint trajectory at each gain was quantified by scaling CR and TE of each movement to its to maximal endpoint displacement (S1 Fig).

4/19

67

68

69

70

71

72

73

74

78

Results

We used closed-loop simulations of a 25-afferented Hill-type muscles and 5 DOF model of a Rhesus macaque monkey 81 to study how uninhibited velocity-dependent stretch reflexes disrupt arm movement trajectory and how the 82 disruptions changes when the reflex gain is increased. The afferented muscle consists of a simple muscle spindle 83 model that outputs positive velocity of lengthening muscles (i.e., velocity of stretch) as afferent feedback subject to a 84 reflex gain. The peak change in muscle activation at any reflex gain (S2 Fig) were comparable to those (up to 40%85 MVC) observed in the human arm during interactions with destabilizing environments [28]. We further investigated 86 how the disruption in movement trajectory change when reflex gains are simply proportional to the α -drive to muscle. 87 Using our neuromuscular computational model, we find that the disruptions of the arm endpoint trajectories were 88 surprisingly movement-specific, typically large and variable, and could even change movement direction as the reflex 89 gain increased (Fig.3A). In contrast, these disruptions became small at all reflex gains when the simulated stretch 90 reflexes were made proportional to the α -MN drive to muscles (Fig.3B). 91

Unmodulated velocity-dependent stretch reflexes cause large, variable disruptions of the endpoint trajectory in task-dependent ways

Our 1,100 open-loop simulations of arm endpoint trajectories resulted in small and large arm movements (S1 Fig), 94 which were disrupted when closing the loop with the velocity-dependent stretch reflex feedback. Unmodulated reflex 95 gains resulted in disrupted movement trajectories (Fig. 3A, cases 635, 147, 430, 884, and 122). Conversely, in other 96 arm movements, the terminal positions remained unaffected by the reflex gains (Fig. 3A, cases 5,518 and 596). 97 Additionally, further increase in reflex gain could change the movement direction (Fig.3A), case 884 and 122). In all 98 arm movements, disruption in the endpoint trajectory increased when the reflex gain was increased; however, at any 99 reflex gain, k, the magnitude of disruption in the endpoint trajectory were different within movements. This shows 100 that the disruption in the arm endpoint trajectory depended the stretch reflex gain and the movement itself. 101

80

92

Fig 3. Unmodulated reflex gains are cause large, variable disruptions in the movement endpoint.(A) Fourteen examples of the 1,100 arm movements with unmodulated reflex gains show that increasing the reflex gain progressively disrupts the endpoint trajectory in different ways. In (A) cases 5, 518 and 596 only the movement trajectories were disrupted. In (A) cases 635, 147, 430, 884, and 122, both the movement trajectory and terminal position were disrupted; however, in cases 884 and 122, increasing the reflex gain k changed the movement direction. (B) The same fourteen endpoint trajectories in (A), but the reflex gain was proportional to the α -drive to the muscle (see details in Fig.2B of Methods), show that the disruption in the endpoint trajectories were small at all reflex gain k. The endpoint trajectory of open-loop movement is the black plot at reflex gain k of 0. Further analysis of the effects of velocity-dependent on all 1,100 arm movements at each reflex gain is shown figure 5.

The definition of agonist and antagonist muscles loses meaning when considering biologically plausible models of 102 the upper limb (as opposed to single degree of freedom movements primarily considered in the literature) with 103 multiple joints and multi-articular muscles as in our macaque arm model. Instead of reciprocal inhibition of 104 reflexes-which has been historically studied in reduced models [18,21]-we proportionally modulated the reflex gain by 105 the α -drive to the muscle (Fig.2B)). In this closed-loop simulation of arm movements with reflex gain k proportional 106 to individual muscle's α -drive, the disruption in the movement endpoint trajectory became small in each movement 107 at all reflex gains (Fig.3B). In figure4, we show four examples of endpoint trajectories that had larger disruptions 108 when the reflex gain was scaled by the homologous α -drive (bottom plots). These disruptions were still small 109 compared to the unmodulated reflex gains (top plots). 110

A. Unmodulated reflex gain B. Reflex gain scaled by the homologous α -drive

Fig 4. The largest endpoint disruption when the reflex gain was made proportional to the α -drive of the muscle were smaller than the disruptions in the arm movements with unmodulated reflex gains.(B) Four examples of endpoint trajectories of the arm movements with the largest disruption in the endpoint trajectory when the reflex gain was made proportional to the alpha drive of the muscle and (A) their respective endpoint trajectories when the reflex gain were unmodulated.

We also simulated $\alpha - \gamma$ co-activation and compared the overall distribution of the disruptions in the endpoint movement trajectory (i.e., cumulative residual Fig.5,top plots) and the terminal position (i.e., terminal error Fig.5,bottom plots) at each reflex gain (vertical scatter plots). The cumulative residual and terminal error were large at higher reflex gains. However, the magnitude of disruptions at any gain k were small and less variable when the stretch reflexes were scaled by the α -drive Fig.5B) or when simulating $\alpha - \gamma$ co-activation (Fig.5C). Figure 6 shows the error when reflex gain was scaled by the α -drive vs simulating $\alpha - \gamma$ co-activation.

Fig 5. Terminal error and cumulative residual with respect to the reference trajectories were large and variable for the unmodulated stretch reflex gains(A); but typically small to negligible when the stretch reflexes were scaled to the baseline activation level of each muscle (B). For each movement, we divided the deviation in movement trajectory (i.e., cumulative residual, CR) and terminal position (i.e., terminal error) by the maximal endpoint displacement of that movement's reference trajectory (S1 Fig). Both CR and TE (top and bottom plots respectively) of all 1,100 arm movements at each gain k reduced when the reflex gains were proportional to the α -drive (B) compared to the unmodulated reflex gains(A). In (C), we made the reflex gain proportional to the feedforward α -MN drive (similar to the α - γ co-activation theory). Similar to when the reflex were proportional the α -drive collateral (B), CR and TE became small compared to the unmodulated reflex gain in (A). The physiological plausibility of modulating reflex gain at the spinal level(B) vs the α - γ co-activation(C) is provided in discussion session.

Reflex gain scaled by the homologous α -drive

Fig 6. Cumulative residual (A) and terminal error (B) when simulating ideal $\alpha - \gamma$ co-activation vs. a simple homologous circuit where reflex gain was scaled by the α -drive (Fig. 8).Note these plots, for clarity, these plots show cumulative residual and terminal error shown in Fig.5B&C up to 0.04 and 0.1 respectively.

Discussion

We used a computational model of a *Rhesus Macaque* arm with 25 muscles to test whether velocity-dependent stretch 118 reflexes (i.e., simple positive feedback monosynaptic simulating Ia afferents) are sufficiently disruptive to require 119 active or predictive modulation to produce accurate movements in realistic multi-articular limbs. Our results show 120 that the disruptions of the movements caused by the velocity-dependent stretch reflexes are large, variable, and 121 task-dependent enough to need inhibition, as has been proposed—but never quantified—by Sherrington and 122 others [8, 19, 22, 29, 30]. We then demonstrate a generalizable spinal regulatory mechanism (similar to, but distinct 123 from, $\alpha - \gamma$ co-activation) that significantly reduces disruptions caused by unregulated velocity-dependent stretch 124 reflexes. Importantly, this mechanisms is supported by homologous excitatory α -MN collaterals to γ -MNs that have 125 been reported to exist among motoneurons [31, 32], but not thought to provide this function. 126

Muscle afferentation compels us to revisit the foundations of voluntary movement

The maxim apocryphally attributed to Sherrington that 'Inhibition is as important as excitation' is emphasized in 128 the iconic single-joint system with an agonist-antagonist muscle pair that customarily introduces students to the 129 motor system [17,33]. This neuromechanical system clearly shows that, for voluntary joint rotation to occur, the 130 shortening of the 'agonist' muscle is made possible by the inhibition of length- and velocity-dependent stretch reflexes 131 of the lengthening 'antagonist' muscle. As has been extensively documented in highly controlled experimental 132 single-joint preparations, this can be made possible by propriospinal reciprocal inhibition or coordinated descending 133 inhibitory signals [4, 18, 21, 29]. However, how this concept and its circuitry generalize for voluntary movement of 134 realistic multi-joint limbs with numerous multi-articular muscles remains an open question in theories of motor 135 control, and is left to specialists to grapple with [18,21]. The reasons are multiple. For example, a same muscle can 136 switch between eccentric and concentric contraction during a same movement, and the roles of agonist and antagonist 137 lose their meaning [19, 20, 34]. More fundamentally, the addition of muscle afferentiation to the problem of motor 138 control transforms muscle coordination into a mathematically over-determined problem (i.e., there is at most one 139 solution: any eccentrically contracting muscle that fails to regulate its velocity-dependent stretch reflex can lock or 140 disrupt the movement) [19,20]. This is the opposite of the traditional view that muscle coordination is 141 mathematically redundant (i.e., *under-determined* where infinite combinations of muscle forces can produce a same 142 joint torque). This dichotomy or apparent paradox arises because limbs are controlled by afferented musculotendons 143 that can shorten and lengthen, making the control of joint rotations (i.e., limb motion) mechanically and 144 neurophysiologically distinct from the control of net joint torques (i.e., limb forces) [19,35,36]. 145

The issues raised by muscle afferentiation are so profound that they have, broadly speaking, split the computational motor control community into two camps: those who seek to understand spinal circuitry and how muscle afferentiation is regulated [5,8,18,37–39], and those who assume that mechanism such as $\alpha - \gamma$ co-activation allow appropriate muscle lengthening as needed. As a result, muscle afferentiation is not mentioned in canonical reviews of computational theories of motor control, or is assumed to be a form of feedback regulated at the cortical level via efferent copy and internal models [40–42]. Our results bridge both camps by providing fruitful research directions to the former, and objective quantification of the cost of not including muscle afferentiation to the latter.

A humble low-level circuit to the rescue?

The main contribution of this work is that it confronts us with the previously unknown true cost of unmodulated 154 velocity-dependent stretch reflexes, while also proposing an evolutionary and physiologically plausible solution at the 155 level of propriospinal circuitry. Frankly, we were surprised by the magnitude and variety of types of disruptions that 156 arose when velocity-dependent stretch reflexes are not modulated. In response to this we confirmed and made sure 157 that in our simulations the maximal velocity-dependent stretch reflex gain was at a scale comparable to that seen in 158 stretch reflexes in humans by Perrault and colleagues [28]. Importantly, the disruptive effect is consistently visible 159 even when the gain is one tenth of the maximal gain (Figs. 3A, 4A, and 5A). Moreover, we explored this effect in a 160 total of 1,100 distinct movements. It was often the fact that the velocity-dependent stretch reflex emerged in the 161 weakly excited muscles (Fig.7 and S2 Fig). Thus, we believe the disruptions we report are a realistic and valuable 162 computational prediction of the neuromechanics of limb movement that are not possibly or easily obtained 163 experimentally—which is one of the most useful applications of computational modeling [43]. 164

153

146

147

148

149

150

151

152

Fig 7. Sample muscle activation with velocity-dependent stretch reflex feedback at maximal reflex gain. Nine examples of α -MN -drive to muscles during closed-loop simulation with velocity-dependent stretch reflex at a reflex gain k of 10. Top plots are examples of cases shown in fig 3 in which scaling the velocity-dependent stretch reflex by the α -MN -drive to each muscle significantly reduced disruption in the movement trajectory and terminal position. Bottom plots are examples of cases shown in fig 4 that had large disruptions when the velocity-dependent stretch reflexes are scaled by the α -MN -drive to each muscle.

Our proposed mechanism simply scales velocity-dependent stretch reflex by an excitatory α -MN collateral. Such 165 collateral projection among MNs have long been observed in studies of the cat spinal cord, Fig. 8A [31], but not 166 interpreted in this context, or for this functional role. Rather, the functional role of that reported inter-motoneuronal 167 facilitation was only speculated on and interpreted as connections between α -MNs. Importantly, those 168 studies [31, 32, 44, 45] did not specify or disprove that the excitatory (or disinhibitory) projections were from α -MNs 169 to γ -MNs as we propose here. In addition to this evidence, recent studies in mice have shown recurrent excitation 170 between MNs; with fast-type α -MN systematically receiving greater recurrent excitation than slow-type MNs [32, 46]. 171 Thus, prior studies partly support our proposed mechanism, even if their experimental limitations could not 172 conclusively identify projections to γ -MNs. However, we believe that it is not unreasonable to suppose that such 173 collateral projections to γ -MNs indeed exist. In addition, recent computational work also argues that Ia afferent 174 signals for voluntary movement require fusimotor modulation independent of corticospinal drive [23]. We believe our 175 mechanism provides this modulation. Experimental validation of our proposed circuit will require the maturation of 176 some promising optogenetic techniques that could show such low-level control of γ -MN in all, or at least some, 177 motoneuron pools in behaving animals [46–48]. 178

Fig 8. Three schematic spinal circuits compatible with Eqn. 2: From Wilson and Burgess (1962) [31] (left), its adaptation to have the collateral disinhibit the homologous γ -MN via a disynaptic projection via a Renshaw cell (middle), and a straightforward monosynaptic excitatory drive to the γ -MN compatible with [32] (right). All of these versions of collaterals from α -MN to γ -MN are able to achieve the results presented—yet they are neuroanatomically and functionally distinct from, and not equivalent to, $\alpha - \gamma$ co-activation (see Discussion).

It is important to note that our proposed spinal level mechanism for scaling $\gamma_{dynamic}$ MN activation by the homologous α -MN collateral is not only generalizable to any movement, but also independent of the cortical, subcortical or propriospinal competition at the presynaptic α -MN level. Rather, because it projects the actual (i.e., *postsynaptic*) α -MN drive to muscle fibers, this excitatory mechanism to the γ -MN sidesteps the uncertainty and delays arising from the *presynaptic* synthesis and competition among cortical, subcortical or propriospinal presynaptic projections to α -MN pools that $\alpha - \gamma$ co-activation must consider.

How does this low-level circuit compare with $\alpha - \gamma$ co-activation and other cortically-mediated variants?

The popular and dominant working hypotheses about the regulation of muscle spindle sensitivity [17,49] revolve 187 around the coordination between α -MN and γ -MN activity in a way that allows muscle propriception and eccentric 188 contractions. The traditional version of $\alpha - \gamma$ co-activation posits that the $\gamma_s tatic$ MNs that drive the intrafusal 189 fibers of the secondary (II) spindle afferents (sensitive to muscle length) are activated synchronously with α -MNs. 190 This prevents the intrafusal muscle fibers from going slack to maintain secondary spindle sensitivity. However, $\alpha - \gamma$ 191 co-activation does not explicitly address the intrafusal primary Ia afferents involved in velocity-dependent stretch 192 reflexes [50]. Other theories like *Fusimotor Setpoint* focus on Ia stretch-sensitivity during learning [14], but do not 193 address arbitrary movements after they have been learned. Two other hypotheses posit that fusimotor drive is played 194 out as a Temporal Template [51] or as Goal-Directed Preparatory Control [52]. 195

Importantly, $\alpha - \gamma$ co-activation and its variants above hinge on the fundamental assumption that the system has 196 sufficiently accurate knowledge of the time-varying variables that determine musculotendon lengths and velocities 197 (e.g., the current and future states of all muscles, joint kinematics and external forces). Multiple theories have been 198 proposed to provide such future knowledge (which is also needed for learning, error correction, response to 199 perturbations, etc.) including efferent copy, internal models, optimal control, synergy control, and Bayesian 200 estimation [41,53–55]. However, time delays and uncertainty will always conspire to pollute such estimates and 201 prevent time-critical coordination between homologous α - and γ -MN pools of a same muscle. In addition, there is the 202 significant challenge of coordinating $\alpha - \gamma$ co-activation signals to arrive to their specific homologous pairs of α - and 203 γ -MN pools via different pathways with different conduction velocities (i.e., predominantly cortico-spinal vs. reticuo-204 rubro- and vestibulo-spinal tracts, respectively). Lastly, any such synchronous control can only serve to bias the 205 presynaptic input, but not directly provide the γ -MNs the actual postsynaptic α -MN drive to muscle fibers, as 206 mentioned above. 207

In this work, we were careful to make an explicit comparison between our proposed circuit vs. the ideal 208 implementation of $\alpha - \gamma$ co-activation (Fig. 2), as shown in Fig. 5. These results show that both approaches have 209 functionally equivalent, but not identical, performance. This supports the face validity of $\alpha - \gamma$ co-activation that has 210 been a fundamental tenet of sensorimotor neuroscience but, as mentioned above, is of uncertain implementation and 211

185

has multiple practical drawbacks. We conclude that, given their arguably equivalent performance, Occam's Razor strongly encourages us to favor the simplicity of a low-level circuit to modulate γ -MNs via α -MN collaterals as shown in Fig. 8, which inherently sidesteps the challenges of time delays, uncertainty and presynaptic competition of any version of $\alpha - \gamma$ co-activation.

Locally-mediated modulation of γ -MNs via α -MN collaterals enables meaningful cerebellar and cortical learning and adaptation mechanisms

Biological and machine learning have the fundamental requirement that the system in question be minimally 218 controllable, observable and predictable [56]. Said differently, meaningful error signals are necessary for any effective 219 and efficient learning processes. Our results for unmodulated velocity-dependent stretch reflexes for voluntary 220 movement show that a realistic limb with afferented muscles will have disruptions that are movement-specific, 221 typically large and variable, and that could even change movement direction as the velocity-dependent reflex gain 222 increases. Therefore, the presence of unmodulated velocity-dependent stretch reflexes presents any learning strategy 223 with error signals that are at best highly nonlinear, and at worst not meaningful for learning—making it difficult or 224 even impractical to learn limb movements from a naïve state. Placing our results in the context of the rich literature 225 on motor learning and control, and using cerebellar circuits as an example, we argue that the regulatory effects the 226 proposed circuit in fact serve as a critical enabler for learning. Current thinking is that computational frameworks of 227 the cerebellum favor hierarchical reinforcement learning with predictions via multiple internal models [42]. However, 228 forming, refining and exploiting an internal model of any variety from a naïve state requires experience with a 229 minimally controllable, observable and predictable system. We propose that this low-level circuit for locally-mediated 230 modulation of γ -MNs via α -MN collaterals regularizes any new voluntary limb movement to the point that it can 231 enable learning from a naïve state by combining motor babbling [57] or directed practice [58] with a higher-level 232 learning strategy. It is to the advantage of the individual to be born with a body that is minimally controllable from 233 the start. 234

Importantly, and as can be seen from the measurable cumulative and terminal errors in Fig.5B, this low-level circuit is far from a panacea, but is simply a means to mitigate the severe nonlinearities of the afferented limb. This leaves much room, and need, for improvement via supraspinal mechanisms. Nevertheless, this low-level circuit then serves as 'training wheels' that enable exploration-exploitation during the formation of an internal model (or Bayesian priors, synergies, gradient-descent strategies, etc. if the reader is not of the internal-model persuasion [53]). From an evolutionary perspective, we could even speculate that such a low-level circuit is an ancient enabler of movement when the primeval β skeleto-fusimotor MNs in amphibians and reptiles were superseded by separate α - and γ -MNs in mammals [59]—and the need arose for some form of α - γ coordination.

We speculate that, like β -MNs, the proposed circuit is the *afferentation Yin* that complements the *efferentation* 243 Yang of Hennemann's Size Principle to enable low-level, robust regulation of graduated movement. Such fundamental 244 and complementary low-level pair of circuits in a hierarchical and distributed nervous system [5] would then provide 245 local and robust regulation of muscle force for voluntary movement without the need for higher level centers at 246 first—but which can then evolve other more sophisticated cortically-mediate mechanisms to modulate, adapt, 247 supersede or even replace that functionality. In fact, as ontogeny recapitulates phylogeny, such a regulator of 248 velocity-dependent stretch reflex during an individual's early development in an individual would then in time be 249 modulated, after corticospinal myelination [60], when sophisticated controllers become available such as those 250 reported and intensely studied for cerebellar control of movement [42]. 251

Limitations and future work

The scope of this computational study is limited to the investigation of the disruption of voluntary movement caused 253 by velocity-dependent stretch reflex from Ia afferent nerve fibers. Our spindle model is an over-simplified version of 254 previously described models [7,61,62]. Moreover, we assume that there is appropriate γ_{static} drive that keeps the 255 muscle spindle from going slack, and thus do not consider stretch reflex signals from II afferents [18,21]. However, it 256 is conceptually straightforward to consider that such collateral can just as easily project to γ_{static} MNs to accomplish 257 the putative goal of $\alpha - \gamma$ co-activation to prevent slacking of the intrafusal fibers that keep the muscles spindles 258 active. Future work will complete our investigations of the fusimotor system. Similarly, we use a simple Hill-type 259 muscle model included in MuJoCo, which can be improved by our recent work [63]. 260

252

216

217

235

236

237

238

239

240

241

Despite these simplifications, and without lack of generality, our result shows the invariably disruptive effect of 261 unmodulated pure velocity-dependent stretch reflex on voluntary movement at different fusimotor dynamic gains (i.e., 262 stretch reflex gains). In this study we did not intend to represent the full fusimotor system and spinal circuitry; 263 rather we sought to, as a first step, isolate the effects of pure velocity signal from Ia afferent on voluntary movement. 264 Lastly, we necessarily present the best-case scenario for the mitigation of cumulative and terminal errors as we do not 265 consider mono- and di-synaptic time delays in our propose modulation of γ -MN activity. However, this is also an 266 unexplored and unresolved issue in $\alpha - \gamma$ co-activation and its variants as mentioned above. Future work can address 267 conduction and computational delays, as well as nonlinearities and delays from recruitment and rate-coding, muscle 268 activation-contraction dynamics [64], etc. 269

From a behavioral perspective, our simulated tasks are not meant represent a specific task-related upper limb 270 movements such as reaching or joint flexion/extension [20, 23, 28, 30, 37]. Rather, we start with open-loop arm 271 movements that explore and exploit the full 3D workspace so as to ask the fundamental question of the effects of 272 disruptions from velocity-dependent stretch reflex in general. Nevertheless, it is worth considering whether the effects 273 of velocity-dependent stretch reflexes on the simulated movements can extend to movements of functional importance 274 for humans, and especially reaching movements compromised by pathologic synergies in neurological conditions such 275 as stroke, or tremor in Parkinson's disease. For this, it will be necessary to incorporate more detailed models of the 276 muscle spindle, spinal circuitry, and tasks relevant to human functions—and of the neuropathology of interest. 277

Funding

Acknowledgments

The authors would like to thank Junhyuck Woo for his assistance with initial development of the computational model in MuJoCo in the course BME 504, and Dr. Kazuhiko Seki and Dr. Gerald Loeb for their insightful discussion of this work.

283

Supporting Material

S1 Fig. Distribution of maximal endpoint displacement of the reference trajectories of the open-loop 289 movements. 290

S2 Fig. Distribution of the peak change in the muscle activations for all 1,100 cases at each reflex 292 gain.

15/19

References

- 1. Proske U, Gandevia SC. Kinesthetic senses. Comprehensive Physiology. 2011;8(3):1157–1183.
- 2. Proske U, Gandevia SC. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiological reviews. 2012;.
- Strzalkowski ND, Peters RM, Inglis JT, Bent LR. 50 Years of Microneurography: Insights into Neural Mechanisms in Humans: Cutaneous afferent innervation of the human foot sole: what can we learn from single-unit recordings? Journal of Neurophysiology. 2018;120(3):1233.
- 4. Sherrington CS. Reflex inhibition as a factor in the co-ordination of movements and postures. Quarterly Journal of Experimental Physiology: Translation and Integration. 1913;6(3):251–310.
- Loeb GE, Brown IE, Cheng EJ. A hierarchical foundation for models of sensorimotor control. Experimental brain research. 1999;126:1–18.
- 6. Proske U. The mammalian muscle spindle. Physiology. 1997;12(1):37-42.
- Mileusnic MP, Brown IE, Lan N, Loeb GE. Mathematical models of proprioceptors. I. Control and transduction in the muscle spindle. Journal of neurophysiology. 2006;96(4):1772–1788.
- 8. Jalaleddini K, Niu CM, Raja SC, Sohn WJ, Loeb GE, Sanger TD, et al. Neuromorphic meets neuromechanics, part II: the role of fusimotor drive. Journal of neural engineering. 2017;14(2):025002.
- 9. Sanger TD, Chen D, Fehlings DL, Hallett M, Lang AE, Mink JW, et al. Definition and classification of hyperkinetic movements in childhood. Movement Disorders. 2010;25(11):1538–1549.
- 10. Krakauer JW, Carmichael ST. Broken movement: the neurobiology of motor recovery after stroke. MIT Press; 2022.
- 11. Lund J, Smith A, Sessle B, Murakami T. Activity of trigeminal alpha-and gamma-motoneurons and muscle afferents during performance of a biting task. Journal of Neurophysiology. 1979;42(3):710–725.
- Edin BB, Vallbo A. Stretch sensitization of human muscle spindles. The Journal of physiology. 1988;400(1):101–111.
- 13. Ribot E, Roll J, Vedel J. Efferent discharges recorded from single skeletomotor and fusimotor fibres in man. The Journal of Physiology. 1986;375(1):251–268.
- 14. Prochazka A. Proprioceptive feedback and movement regulation. Comprehensive Physiology. 2010; p. 89–127.
- Yaron A, Kowalski D, Yaguchi H, Takei T, Seki K. Forelimb force direction and magnitude independently controlled by spinal modules in the macaque. Proceedings of the National Academy of Sciences. 2020;117(44):27655–27666.
- Macefield VG, Knellwolf TP. Functional properties of human muscle spindles. Journal of neurophysiology. 2018;120(2):452–467.
- Kandel ER, Schwartz JH, Jessell TM, Siegelbaum S, Hudspeth AJ, Mack S, et al. Principles of neural science. vol. 4. McGraw-hill New York; 2000.
- 18. Pierrot-Deseilligny E, Burke D. The circuitry of the human spinal cord: its role in motor control and movement disorders. Cambridge university press; 2005.
- 19. Valero-Cuevas FJ. Fundamentals of neuromechanics. vol. 8. Springer; 2016.
- Hagen DA, Valero-Cuevas FJ. Similar movements are associated with drastically different muscle contraction velocities. Journal of biomechanics. 2017;59:90–100.

- 21. Windhorst U. Spinal Cord Circuits: Models and Reality. Neurophysiology. 2021;53(3):142–222.
- Berry JA, Marjaninejad A, Valero-Cuevas FJ. Edge Computing in Nature: Minimal pre-processing of multi-muscle ensembles of spindle signals improves discriminability of limb movements. Frontiers in Physiology. 2023;14:1183492.
- 23. Hardesty RL, Boots MT, Yakovenko S, Gritsenko V. Computational evidence for nonlinear feedforward modulation of fusimotor drive to antagonistic co-contracting muscles. Scientific Reports. 2020;10(1):10625.
- 24. Chan SS, Moran DW. Computational model of a primate arm: from hand position to joint angles, joint torques and muscle forces. Journal of neural engineering. 2006;3(4):327.
- Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, et al. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE transactions on biomedical engineering. 2007;54(11):1940–1950.
- Ikkala A, Hämäläinen P. Converting biomechanical models from opensim to Mujoco. In: International Conference on NeuroRehabilitation. Springer; 2020. p. 277–281.
- 27. Todorov E, Erez T, Tassa Y. Mujoco: A physics engine for model-based control. In: 2012 IEEE/RSJ international conference on intelligent robots and systems. IEEE; 2012. p. 5026–5033.
- Krutky MA, Ravichandran VJ, Trumbower RD, Perreault EJ. Interactions between limb and environmental mechanics influence stretch reflex sensitivity in the human arm. Journal of neurophysiology. 2010;103(1):429–440.
- Sherrington CS, et al. Inhibition as a coordinative factor. N Foundation (Ed), Nobel Lectures, Physiology and Medicine. 1932; p. 278–289.
- Sandbrink KJ, Mamidanna P, Michaelis C, Bethge M, Mathis MW, Mathis A. Contrasting action and posture coding with hierarchical deep neural network models of proprioception. Elife. 2023;12:e81499.
- 31. Wilson VJ, Burgess PR. Disinhibition in the cat spinal cord. Journal of Neurophysiology. 1962;25(3):392–404.
- Beato M, Bhumbra G. Synaptic Projections of Motoneurons Within the Spinal Cord. In: Vertebrate Motoneurons. Springer; 2022. p. 151–168.
- 33. Enoka RM. Neuromechanics of human movement. Human kinetics; 2008.
- Valero-Cuevas FJ, Cohn B, Yngvason H, Lawrence EL. Exploring the high-dimensional structure of muscle redundancy via subject-specific and generic musculoskeletal models. Journal of biomechanics. 2015;48(11):2887–2896.
- Chib VS, Krutky MA, Lynch KM, Mussa-Ivaldi FA. The separate neural control of hand movements and contact forces. Journal of Neuroscience. 2009;29(12):3939–3947.
- Venkadesan M, Valero-Cuevas FJ. Neural control of motion-to-force transitions with the fingertip. Journal of Neuroscience. 2008;28(6):1366–1373.
- Raphael G, Tsianos GA, Loeb GE. Spinal-like regulator facilitates control of a two-degree-of-freedom wrist. Journal of Neuroscience. 2010;30(28):9431–9444.
- Niu CM, Jalaleddini K, Sohn WJ, Rocamora J, Sanger TD, Valero-Cuevas FJ. Neuromorphic meets neuromechanics, part I: the methodology and implementation. Journal of neural engineering. 2017;14(2):025001.
- Takei T, Seki K. Spinal premotor interneurons mediate dynamic and static motor commands for precision grip in monkeys. Journal of Neuroscience. 2013;33(20):8850–8860.

- 40. Scott SH. Optimal feedback control and the neural basis of volitional motor control. Nature Reviews—Neuroscince. 2004;5:535.
- 41. Todorov E, Jordan MI. Optimal feedback control as a theory of motor coordination. Nature neuroscience. 2002;5(11):1226–1235.
- 42. Kawato M, Ohmae S, Hoang H, Sanger T. 50 years since the Marr, Ito, and Albus models of the cerebellum. Neuroscience. 2021;462:151–174.
- Valero-Cuevas FJ, Hoffmann H, Kurse MU, Kutch JJ, Theodorou EA. Computational models for neuromuscular function. IEEE reviews in biomedical engineering. 2009;2:110–135.
- 44. Cullheim S, Kellerth JO, Conradi S. Evidence for direct synaptic interconnections between cat spinal α -motoneurons via the recurrent axon collaterals: a morphological study using intracellular injection of horseradish peroxidase. Brain research. 1977;132(1):1–10.
- 45. Cullheim S, Fleshman J, Glenn L, Burke R. Three-Dimensional architecture of dendritic trees in type-identified α -motoneurons. Journal of Comparative Neurology. 1987;255(1):82–96.
- Bhumbra GS, Beato M. Recurrent excitation between motoneurones propagates across segments and is purely glutamatergic. PLoS biology. 2018;16(3):e2003586.
- 47. Chopek JW, Nascimento F, Beato M, Brownstone RM, Zhang Y. Sub-populations of spinal V3 interneurons form focal modules of layered pre-motor microcircuits. Cell Reports. 2018;25(1):146–156.
- 48. Chalif JI, de Lourdes Martínez-Silva M, Pagiazitis JG, Murray AJ, Mentis GZ. Control of mammalian locomotion by ventral spinocerebellar tract neurons. Cell. 2022;185(2):328–344.
- 49. Wikipedia contributors. Muscle spindle Wikipedia, The Free Encyclopedia; 2023. Available from: https://en.wikipedia.org/w/index.php?title=Muscle_spindle&oldid=1173583463.
- Vallbo A, al Falahe NA. Human muscle spindle response in a motor learning task. The Journal of Physiology. 1990;421(1):553–568.
- 51. Taylor A, Durbaba R, Ellaway P, Rawlinson S. Static and dynamic γ -motor output to ankle flexor muscles during locomotion in the decerebrate cat. The Journal of physiology. 2006;571(3):711–723.
- 52. Papaioannou S, Dimitriou M. Goal-dependent tuning of muscle spindle receptors during movement preparation. Science Advances. 2021;7(9):eabe0401.
- 53. Cohn BA, Szedlák M, Gärtner B, Valero-Cuevas FJ. Feasibility theory reconciles and informs alternative approaches to neuromuscular control. Frontiers in computational neuroscience. 2018;12:62.
- 54. Körding KP, Wolpert DM. Bayesian integration in sensorimotor learning. Nature. 2004;427(6971):244–247.
- Tresch MC, Jarc A. The case for and against muscle synergies. Current opinion in neurobiology. 2009;19(6):601–607.
- Kudithipudi D, Aguilar-Simon M, Babb J, Bazhenov M, Blackiston D, Bongard J, et al. Biological underpinnings for lifelong learning machines. Nature Machine Intelligence. 2022;4(3):196–210. doi:10.1038/s42256-022-00452-0.
- 57. Marjaninejad A, Urbina-Meléndez D, Cohn BA, Valero-Cuevas FJ. Autonomous functional movements in a tendon-driven limb via limited experience. Nature machine intelligence. 2019;1(3):144–154.
- 58. Steele CJ, Zatorre RJ. Practice makes plasticity. Nature Neuroscience. 2018;21(12):1645–1646.
- 59. Manuel M, Zytnicki D. Alpha, beta and gamma motoneurons: functional diversity in the motor system's final pathway. Journal of integrative neuroscience. 2011;10(03):243–276.

- 60. Kinney HC, Volpe JJ. Myelination events. In: Volpe's neurology of the newborn. Elsevier; 2018. p. 176–188.
- 61. Tsianos GA, Goodner J, Loeb GE. Useful properties of spinal circuits for learning and performing planar reaches. Journal of neural engineering. 2014;11(5):056006.
- 62. Nagamori A, Laine CM, Valero-Cuevas FJ. Cardinal features of involuntary force variability can arise from the closed-loop control of viscoelastic afferented muscles. PLoS computational biology. 2018;14(1):e1005884.
- 63. Nagamori A, Laine CM, Loeb GE, Valero-Cuevas FJ. Force variability is mostly not motor noise: Theoretical implications for motor control. PLoS Computational Biology. 2021;17(3):e1008707.
- 64. Cohn BA, Valero-Cuevas FJ. Muscle redundancy is greatly reduced by the spatiotemporal nature of neuromuscular control. Frontiers in Rehabilitation Sciences. 2023;4.