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Edge Computing in Nature:
Minimal pre-processing of
multi-muscle ensembles of
spindle signals improves
discriminability of limb
movements

Jasmine A. Berry1, Ali Marjaninejad2 and
Francisco J. Valero-Cuevas1,2,3*
1Brain-Body Dynamics Lab, Department of Computer Science, University of Southern California, Los
Angeles, CA, United States, 2Department of Biomedical Engineering, University of Southern California,
Los Angeles, CA, United States, 3Division of Biokinesiology and Physical Therapy, University of
Southern California, Los Angeles, CA, United States

Multiple proprioceptive signals, like those from muscle spindles, are thought to
enable robust estimates of body configuration. Yet, it remains unknown whether
spindle signals suffice to discriminate limb movements. Here, a simulated 4-
musculotendon, 2-joint planar limb model produced repeated cycles of five
end-point trajectories in forward and reverse directions, which generated spindle
Ia and II afferent signals (proprioceptors for velocity and length, respectively)
from each musculotendon. We find that cross-correlation of the 8D time
series of raw firing rates (four Ia, four II) cannot discriminate among most
movement pairs (∼ 29% accuracy). However, projecting these signals onto
their 1st and 2nd principal components greatly improves discriminability of
movement pairs (82% accuracy). We conclude that high-dimensional ensembles
of muscle proprioceptors can discriminate among limb movements—but only
after dimensionality reduction. This may explain the pre-processing of some
afferent signals before arriving at the somatosensory cortex, such as processing
of cutaneous signals at the cat’s cuneate nucleus.

KEYWORDS

muscle spindle afferent, proprioception, limb movement, task discrimination,
dimensionality reduction, musculotendon

1 Introduction

Physical behavior in vertebrates is made possible by hierarchical neuronal systems
that send motor commands from the central nervous system to muscles on the basis of
peripheral mechanoreceptors that encode musculoskeletal information (proprioceptors for
muscle lengths and velocities, tendon forces, joint angles) and haptic skin information.
Motor function has received much attention given the relative ease with which the activity
of α− motoneurons and muscles can be measured and associated with physical behavior.
In contrast, the emergence of somatosensory ‘percepts’ (i.e., the transformation from spike
trains from an ensemble of mechanoreceptors to a neural impression useful to the control
of movement) has proven much more challenging to understand. This is because the action
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potentials from mechanoreceptors on the skin, muscles and joints
are not easily isolated or recorded (Tabot et al., 2013), and the
somatosensory percepts they elicit in the central nervous system
cannot be readily measured.

The lack of understanding of the transformation from
proprioceptive signals to somatosensory percepts is particularly
problematic to the study and theories of sensorimotor control
(Loeb et al., 1990). In particular, somatosensory percepts (also
called kinaesthesia) provide the sense of self-movement and
body configuration and position (Ferrell et al., 1987). In addition,
it is only via the parallel processing of raw sensory signals at
cortical and subcortical levels that it is possible to detect salient
features of the body that can appropriate motor actions to be
selected, elicited and implemented (Cisek and Kalaska, 2010; Berry
and Valero-Cuevas, 2020). Rigorous neurophysiological work on
mechanoreceptors shows that Ia and II muscle spindle afferents
preferentially encode the rate of change of muscle fiber length,
and muscle fiber length, respectively (Mileusnic et al., 2006). The
fact that muscle fiber lengths and velocities are related to the
angles and angular velocities of the joints their musculotendons
cross, respectively, Valero-Cuevas (2016) has led to the assumed
fundamental tenet of sensorimotor control that muscle spindles
provide limb configuration information for adaptable, accurate, and
robust control of limb movement.

Recent computational work suggest that spindle information
is likely necessary to extract a percept of body configuration
(Berry et al., 2017; Berry and Valero-Cuevas, 2020; Sandbrink et al.,
2020), but not sufficient as it may need to be conditioned on
tendon tension information fromGolgi tendon organs (Hagen et al.,
2021). Notwithstanding the geometrically obligatory relationship
between joint angles and musculotendon lengths, the tenet that
spindle information is a primary source of body configuration
(even when conditioned on Golgi tendon organ signals) remains
to be proven as musculotendons often span multiple joints (Valero-
Cuevas, 2016) and spindle signals can be modulated independently
of joint angles by γ− motoneuron drive to their intrafusal fibers
in which the mechanoreceptors sit (Jalaleddini et al. (2017) and
references therein). Moreover, this tenet cannot be demonstrated
experimentally because spindle afferent recordings from numerous
limb muscles in peripheral nerves or dorsal root ganglia cannot
be measured directly during large limb movements. In spite of the
lack of conclusive evidence for this tenet, it is regularly adopted to
the point that other mechanoreceptors also affected by joint angles
(i.e., synovial capsule, ligaments and skin) and Golgi tendon organs
(which respond to tendon force) are considered secondary for the
control of movement for reasons detailed in the Discussion.

The main motivation for our computational approach based on
principal components analysis (PCA) is the inability to empirically
record large ensembles of spindle afferent signals during movement,
and the evidence that pre-processing of tactile information is
analogous with PCA (Sanger, 1989; Rongala et al., 2018). In
particular, we performed a computational experiment to assess
the ability of raw versus pre-processed spindle afferent signals to
provide usable limb configuration information. Such pre-processing
has been described for tactile signals in the cuneate nucleus in
the brainstem of the cat (Rongala et al., 2018). This subcortical
pre-processing is an example of parallel processing advocated for
biological systems (Cisek and Kalaska, 2010). Mearns et al. (2020)

used high-speed videography to investigate the hunting behavior
of larval zebrafish, focusing on the neural circuits and mechanisms
involved in the behavior. Findings showed how hunting behavior
is mediated by a tightly coupled stimulus-response loop, with
distinct populations of neurons controlling different aspects of
the behavior. Additionally, Marques et al. (2018) used unsupervised
clustering algorithms to classify the various types of locomotor
behavior exhibited by zebrafish larvae, consequently finding that
the zebrafish locomotor repertoire consists of a small number of
discrete behavioral states, each of which is associated with a distinct
set of motor patterns. Several genetic mutations were identified
that altered the zebrafish locomotor repertoire, suggesting that the
genetic basis of behavior is closely linked to the neural circuits
that control it. Unlike centralized and serial engineering controllers,
animals tend to have a distributed and hierarchical neural structure
for the processing ofmotor and sensory signals (Grillner andWallen,
1985; Schwab and Coates, 2003). Such peripheral pre-processing
of the flood of somatosensory information is analogous to the
use of parallelized ‘Edge Computing,’ which affords temporal and
computational efficiencies when massive amounts of data from
different sources are involved (Varghese et al., 2016).

As in Rongala et al. (2018), we use the statistical notion of
discriminability (i.e., distinguish task A from B) as a minimal
requirement for the utility of sensory percepts. Discriminability
has also been used to test how raw and processed signals from
skin mechanoreceptors on the fingertips can be used to distinguish
among different edges and textures to inform manipulation
(Saal et al., 2017; Okorokova et al., 2019). In this investigation, we
tested the extent to which raw versus pre-processed ensembles of Ia
and II spindle afferents signals could discriminate among the five
simulated limb movements that produced them.

2 Materials and methods

The computational design of the simulated tendon-driven
system, the trajectories selected for inspection, and the modified
spindle afferent model is detailed further in this section. Then we’ll
detail the methods of pre-processing and filtering used to reduce
the dimensions of afferent signals. Our pre-planned trajectories
produced afferent signals that were compared in inter-class contexts
in then processed in data series estimation, pattern identification,
and unsupervised machine learning algorithms on the resulting
afferents to reveal their spatial and temporal dynamics. Lastly, we’ll
conclude with a review of how the feature selection and extraction
techniques were implemented to determine which relevant spindle
model features maintained substantial effects in classifying one
trajectory from another within sensory space.

2.1 Kinematic model structure and
parameters

We constructed a simplified tendon-driven leg model,
represented as the feline hindlimb, with a pivot at the hip joint.
In tendon-driven anatomies, tendons are responsible for permitting
muscles to act on vertebrate limbs and actuating the kinematic
Degrees of Freedom (DOF) (Valero-Cuevas and Santello, 2017).The
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planar model consisted of four muscles, two links, and two DOFs
(Hip Flexion/Extension and Knee Flexion/Extension) connecting
the thigh and shank, as shown in Figure 1. For simplicity we
excluded actuation of the foot (i.e., paw), which is normally included
in a feline hindlimb model and would be more representative of the
actual feline. Lengths of the thigh and shank segments were set to
90 mm and 100 mm, respectively, with musculature comparable to
the muscle-joint interactions and parameter data resulting from
system identification analyses (Harischandra and Ekeberg, 2008)
that were based on mathematical properties of skeletal muscle
formulated by Zajac (1989).

To imitate the useful dynamics of the cat’s hindlimb mobility,
we captured the movements of the leg as generated by 4 muscles:
Anterior Biceps (AB), Iliopsoas (IL), Vastus Lateralis (VL), and the
Semitendinosus (SM). Table 1 summarizes the parameters we used
in the musculo-tendon structure which contained parameters of
maximal length as Lmax, constant moment arm values as r, and
optimal length values (LO)permuscle at the reference angle. Figure 1
depicts the tendon routing of AB, IL, and VL as unifunctional joint
muscles. AB and IL are acting in paired antagonistic form on the
hip. VL activates knee extension movements, while SM serves as a

bifunctional jointmuscle acting on both the hip and knee. According
to Harischandra and Ekeberg (2008), the resting (neutral) posture
of the hip at 65° and the knee at 100°maintained mono-articulated
muscles at a length of 85% of Lmax and 75% for bi-articulated
muscles.

2.2 Trajectory planning

Arbitrary shapes were selected as pre-planned trajectories in
two-dimensional planar space for the end-effector limb positions.
All trajectories were performed in closed loops and mathematically
expressed as parametric functions of time, t, to obtain the x and
y coordinate locations. The cat limb executed five point-to-point
movements that will be further referred to as task representations.
Each task representation contained a total of 200 equidistant points
per cycle on the trajectory. One full cycle lasted for a time frame of
one cycle/second.

The first task representation is the Circle trajectory (Figure 1A)
which prompted the limb to perform uniform circular motion

FIGURE 1
Limb kinematics were derived from distinct leg movements that produced different ecological end-point trajectories. The 2-joint planar kinematic limb
model has four muscles analogous to those found in the cat hindlimb: anterior biceps, iliopsoas, vastus lateralis, and semitendinosus. We used the
model to produce five endpoint trajectories The red arrowheads indicate the default movement direction (also studied in the reverse direction). (A)
Circle trajectory in a clockwise direction. (B) Line (point-to-point) trajectory from left to right. (C) Oscillatory (sinusoidal) trajectory from left to right. (D)
Lemniscate (“figure-eight”) trajectory. (E) Square trajectory in a counterclockwise direction.

TABLE 1 Simulated limb andmusculotendon parameters.

Muscle name Lmax (mm) Angle movement Moment arm
(mm)

Reference angle LO (%)

Anterior Biceps 70 Hip Extension 30 85

Iliopsoas 70 Hip Flexion −44 85

Vastus Lateralis 50 Knee Extension 9 85

Semitendinosus 70
Hip Extension 30

75
Knee Flexion −38

Optimal lengths (LO) of each muscle at the reference angle were set to 85% and 75% of Lmax for unifunctional and bifunctional muscles, respectively.
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within a 5 mm diameter in the clockwise direction. The end-
effector’s total distance traveled approximates to 15.71 mm. Next,
the Line trajectory (Figure 1B) positioned the end-effector on
the path of a straight line to simulate smooth, uninterrupted
movement along a ramp. Relative to the horizontal plane, the line
segment retained a 50% incline at 26.57° steepness. Its midpoint
position was at the 100 mm y-intercept on the Cartesian plane.
The total distance traveled for one cycle of the Line trajectory was
12 mm.

The Oscillatory trajectory (Figure 1C) is a sinusoidal wave
forming a path of a smooth periodic oscillation. Using Eq. 1 as a
function of time, the amplitudeAwas set to 20 mmwith a frequency,
f, of 10 Hz. The angular frequency, w, expressed in radians at run-
time Eq. 2 along with zero phase shift, φ.

ω = 2π f (1)

yn (t) = A sin(ωt+φ) (2)

The Lemniscate trajectory (Figure 1D) created two symmetrical
and uniform-sized lobes to form a shape resembling the “figure-of-
eight” curve (Richardson and Flash, 2002). The curve was formed
using parametric curves from Eq. 3 and Eq. 4.

xn = 4× 10−2 sin(5× 10−1t) (3)

yn = 2× 10
−1 sin (t) + 11× 10−2 (4)

Lastly, we prescribed the Square trajectory (Figure 1E) as
a proximity comparison to the Circle trajectory movement.
Considering squares and circles are topologically equivalent shapes,
we expected to view closer spatiotemporal similarities in the sensory
space between these two shapes over others. However, squares differ
in their non-continuity and finite lines of reflectional symmetry
which also might reflect symmetry within the afferent manifolds.
To what extent will the afferent signals reflect these features in
the observed kinematics and make the muscle activities and joint
motions distinguishable is one facet of the experimental outcomes
we sought to observe.

The limb joints on the planar limb actuate as revolute joints
with links capable of rotating around it. The 2 links comprise
of an end effector which maintains the foot position at the end
of the shank link and also the end of the articulated body.
While the hip position remained affixed as the root joint, we
calculated the tracing of the end effector position across each of
the five trajectories using inverse kinematics. For each trajectory,
the 200 target positions in the Cartesian space were selected
as inputs for the inverse kinematics algorithm and the limb
pose (i.e., state) required for the target position were derived
to determine the joint angles at the hip and knee, q1 and q2
respectively.

Inverse kinematic solutions are generally not unique, and are
sometimes dependent on the initial joint coordinated q0, which
typically defaults to value 0. However, the θ values for q1 and q2
of the limb were successfully obtained despite the possibility of a
multiplicity of joint angles producing the same end-effector position.
Given the desired limb’s end-effector positions, for each time step
across the trajectory at instance i, the segment link lengths, l1 and l2,

and the coordinate positions, x1 and x2, were recorded to calculate
variables c and s in Eq. 5 and Eq. 6, respectively. Joint angles q1 and
q2 for each segment were then iteratively derived using equations
Eq.7 and Eq.8.

c =
(x2

i + y
2
i − l

2
1 − l

2
2)

(2l1l2)
(5)

s = √1− c2 (6)

q1 = sin
−1 yi (l1 + l2c) − xil2s

x2
i + y

2
i

(7)

q2 = cos
−1 x

2
i + y

2
i − l

2
1 − l

2
2

(2l1l2)
(8)

Once the limb’s joint angles are calculated, a Jacobian matrix
can be generated to determine the relationship between
simulated limb’s joint parameters and the end-effector velocities.
The change in joint angles are then used as inputs for the
muscle spindle model to obtain raw sensory afferents for each
trajectory.

2.3 Muscle spindle afferent data collection

In a similar method that was used in Berry et al. (2017), the
joint and limb kinematics were solved using a computational
sub-model to simulate the biological spindle as observed in
mammalian muscles, namely that of the cat (Mileusnic et al., 2006;
Mileusnic and Loeb, 2006), which has also been used in human
simulations (Song et al., 2008; Laine et al., 2016). Action potentials
in pulses per second (pps) were generated for primary (Ia) and
secondary (II) afferents based on the interactions of the intrafusal
fibers (chain, bag1, bag2). Fusimotor activation and the property
changes in induces within the spindle model is represented by
contractile elements (CE). The spindle model operates from a set
of parameterized inputs that included Lo as optimal muscle lengths,
Lce as muscle length normalized to Lo, Vce as the rate of change in
muscle length (i.e., velocities), Ace as muscle length acceleration, Fs
as sampling frequency, γdynamic as dynamic gamma drive, and γstatic
as static gamma drive.

The model produced only two outputs, which were non-linear
firings of the primary afferent potential and secondary afferent
potential modalities in the spindle, Ia and II respectively. As
stated in Mileusnic et al. (2006), the generation of afferent potential
reflects the stretch of the intrafusal fiber model’s sensory zone.
Afferent potential primary is derived based on Eq. 9 where T/KSR

is the calculated stretch in the sensory region of each intrafusal
fiber, LSRN is the sensory region threshold length, LSR0 is the
sensory region rest length, and G is a constant that indicates the
numerical relationship between intrafusal fiber’s sensory region to
primary afferent firing. Afferent potential secondary derived based
on Eq. 10 where X is the percentage of the secondary afferent
located on the sensory region and Lsecondary is the secondary rest
length.

Ia A f ferent Potential = G ⋅ [ T
KSR − (L

SR
N − L

SR
0 )] (9)
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II A f ferent Potential

= G ⋅ {X ⋅
Lsecondary

LSR0
⋅ [ T

KSR − (L
SR
N − L

0
N)]

+(1−X) ⋅
Lsecondary
LPR0
⋅ (L− T

KSR − L
SR
0 − L

PR
N )} (10)

Both of the afferent firing model’s output firings were collected
as raw data to be statistically analyzed for useful features that would
indicate the current state of the limb.

2.4 Comparison of inter-class trajectory
context

In order to evaluate the discriminability of afferent signals
against task-actions, the trajectory types must be compared
extensively. The five trajectories selected for inspection are cycles
of shapes and curvatures that are not typically associated with
the natural gait of a feline hind limb: Circle, Line, Oscillatory,
Lemniscate, and Square. For this reason, there is an increased
likelihood to indisputably discern variations despite noise that may
be present with a data set’s dimensionality, resolution, and sparsity.
In our initial simulation executions, we observed that sensory
afferent outputs of the muscles varied significantly depending
on the initial conditions and the direction the limb moves in
to complete the cycle. Therefore, we ensured that the simulated
limb traversed each of the trajectories in two opposite directions:
Reverse (REV) and Forward (FWD). For example the Circle-
FWD, which indicates the limb traversed the Circle trajectory
moving in the Forward direction, was compared in series to Circle-
REV, Line-FWD, Line-REV, Oscillatory-FWD, Oscillatory-REV,
Lemniscate-FWD, Lemniscate-REV, Square-FWD, and Square-
REV. All possible combinations of trajectory comparisons totaled
to 45 correlation pairs in both the raw data set and pre-
processed (i.e., PCA) data set. The combination set did not
include pairs that evaluated a trajectory-direction against each
other.

2.5 Spatial, spatio-temporal,
pre-processing of muscle spindle afferent
data

To test the presence of discriminability across tasks, the afferent
data sets were evaluated within 3 pattern constraints: spatial, spatio-
temporal, and pre-processing from dimensional reduction.

2.5.1 Spatial analysis
We first evaluated the spatial patterns using the K-means++

algorithm. Since the standard K-means algorithm does not
guarantee to find the optimum, an alternative, K-means++ chooses
initial centers on a justifiable upper bound within a cluster sum of
squares objective.The approach is initiated by separating the k initial
cluster centers, spatially.

Overall the formal objective is to determine:

argmin
S

k

∑
i=1
∑
x∈Si

‖x− μi‖
2 = argmin

S

k

∑
i=1
|Si|Var Si (11)

where μi is the mean of points in Si. This may also be shown to
be equivalent tominimization of the squared deviations of points, as
shown by:

argmin
S

k

∑
i=1

1
2|Si|
∑

x,y∈Si

‖x− y‖2 (12)

For an initial set of kmeansm(1)1 ,…,m
(1)
k , the algorithmproceeds

by alternating between the assignment step and an update step, until
convergence.

2.5.2 Spatio-temporal analysis
A useful statistical measure to use that identifies significant

correlations among multiple trajectories with spatial and temporal
components is cross correlation. It compares the time-series of
afferent data across tasks, and is represented as the ratio in Eq. 13,
where n is the total number of data point indices recorded per
task cycle. This is suitable for measuring well two variables move
in relation to each other. Both xi and yi are the individual spindle
afferent sets, Ia and II, respectively. A temporal shift delay, phase
lag τ, of the output cross correlation, Rxy, measure is applied to
determine where the correlation of the data is maximized, as shown
in Eq. 14

Rxy (τ) =
∑n

i=1
(xi − x)(yi − y)

√∑n
i=1
(xi − x)

2∑n
i=1
(yi − y)

2
(13)

τestimated = argmax
τ∈ℝ
(Rxy (τ)) (14)

To retrieve the correlation coefficients, local sums can
be calculated in an alternative way to normalize the cross-
correlation. Using normalized cross correlation follows a general
procedure by Lewis (2005) and Haralick and Shapiro (1992)
in Eq. 15

γ (u,v) =
∑

x,y
( f (x,y) − fu,v)(t (x− u,y− v) − t)

√∑
x,y
[ f (x,y) − fu,v]

2
∑

x,y
[t (x− u,y− v) − t]2

(15)

We treat the combined group of muscle modalities within
the afferent data as an image and template correlation and
calculating the cross-correlation in the spatial or the frequency
domain. The implementation closely follows the formula from
Lewis (2005), where f is the image, t is the mean of the
template, and fu,v is the mean of f(x,y) in the region under the
template.

2.5.3 Data pre-processing for principal
component analysis

We investigated the ability of muscle proprioceptors to
discriminate among different limb movements, specifically focusing
on spindle Ia and II afferent signals. This approach to percepts
is inspired by how tactile signals are able to discriminate among
touch inputs in Rongala et al. (2018). Initially, the raw firing rates
of four Ia and four II afferent signals were cross-correlated in an
8-dimensional time series. However, such cross-correlations in
the native high-dimensional space did so poorly (see Results in
Section 3). Therefore, we opted to apply cross-correlation after
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 1: Input: Form row vectors xi = (x1i,x2i,…,xdi)

from n data points. Data matrix X ∈ ℝn×d, size

n×d, number of components k

 2: Output: Matrix of transformed data Z ∈ ℝn×k

 3: Procedure: Compute the mean of each

variable x̄ = 1

n
∑n
i=1xi

 4: Subtract the mean of each column from

matrix X to center the data

 5: Calculate the covariance matrix C = 1

n
XTX

 6: Compute the eigenvectors and eigenvalues

of C: CV = λV, where V ∈ ℝd×d and λ ∈ ℝd

 7: Sort the eigenvalues in descending order

and select the k largest eigenvectors

corresponding to the k largest eigenvalues to

form the matrix U ∈ ℝd×k

 8: Transform the data using Z = XU

 9: return reduced Z

Algorithm 1. Principal Component Analysis (PCA).

dimensionality reduction via principal component analysis (PCA).
Principal component analysis is a method of dimensionality
reduction often used to 1) increase computational efficiency: with
fewer features, machine learning algorithms can run faster and
require less memory, 2) remove noise and redundancy from data, 3)
improving the accuracy of subsequent analyses, and 4) visualize
data in lower dimensions: making it easier to see patterns and
relationships among variables.

In this case, we use PCA as a dimensionality-reduction method
to identify the principal components that represent the most
variance between the Ia and II signals. This is an extension of
our work that explores the use of PCA as a tool to understand
and characterize the degrees of freedom of neuromechanical
systems Kutch and Valero-Cuevas (2012); Valero-Cuevas (2016);
Clewley et al. (2008); Bartsch-Jimenez et al. (2023). In those works,
we describe the advantages and limitations of PCA in detail. Briefly,
its limitations include its assumption of orthogonality and linearity
of the bases found, loss of information about subtle features,
sensitivity to outliers and variable scaling, requirement of large data
sets, assumption of unimodal distributions of data, and unsuitability
for categorical data. Nevertheless, PCA can be a very powerful
tool to identify the dominant low-dimensional structure of high-
dimensional ensembles of physiological signals.

As shown in Algorithm 1, PCA functions as an unsupervised
learning algorithm that takes a data matrix X as input and outputs a
matrix of transformed data Z of extracted low dimensional feature
vectors, where the data have been projected onto the k principal
components. The algorithm first centers the data by subtracting the
mean of each column from X. Then, it calculates the covariance
matrix C of the entire data set. Next, select the top k eigenvectors,
which value depends on the number of dimensions we want to
reduce the data to and that explain the most variance in the data.
The eigenvalues are sorted in descending order and the k largest
eigenvectors are selected to form the matrix U. Finally, the data
are transformed by computing the dot product Z = XU and the

transformed data samples are returned in a new subspace. This
new space consists of the principal components, which are the
transformed data points that capture the most significant variation
in the original data.

3 Results

3.1 Raw multi-dimensional afferent signals
are bounded, but
movement-indiscriminable

The Ia and II afferent signals from each muscle (in pulses
per second, pps) were recorded for 200 points along each end-
point trajectory. In Figure 2A, the scatter plot of Ia-II afferents
and boxed subplots of individual muscles (Tables 2, 3) show these
pre-processed signals are difficult to disambiguate for proper state
estimation. However upon closer inspection, the per-muscle, per-
type (Ia vs. II), and per-direction boxplots (Figures 2B–E) show the
afferents to be uniquely bounded and limited, likely according to the
anatomical muscle length. Although the end-point trajectories (in
either direction) are indiscriminable on the basis of the ranges of
raw Ia and II signals, the observed lower and upper bounds of each
respective muscle group demonstrate approximate optimal value
ranges to expect afferentation. We then tried clustering as an initial
baseline of the ability of unsupervisedmethods to distinguish among
limb trajectories on the basis of these simulated proprioceptive
signals. For this, we used the K-means++ clustering analysis. Not
surprisingly, it only detected K = 3 clusters (not shown), which did
not correctly detect the expected 10 overlapping clusters (5 types
of end-point trajectories from one another, also in their reverse
directions). This served to motivate the alternative approach we
developed to successfully disambiguate among limb trajectories on
the bases of Ia-II afferent signals.

3.2 Pre-processing suggests observable
correlations in sensory and motor maps

We used Principal Component Analysis (PCA) as the
pre-processing technique because (i) certain artificial neural
networks can be thought of as performing classical statistical
techniques like PCA (Sanger, 1989), and (ii) several studies of
multidimensional sensory signals demonstrate PCA is a useful
means to establish discriminability (Saal et al., 2017; Rongala et al.,
2018; Okorokova et al., 2019). After pre-processing, not only did
we find strong task-relevant groupings but also shape similarities
between the spatiotemporal features of the pre-processed sensory
signals and the corresponding end-point trajectory. In Figure 3A,
the top 3 principal components are plotted for the five trajectories.
The projections overlap each other significantly and are tightly
clustered along the same plane. Most of the explained variance
(99.03%) is captured in the first 2 principal components. PC1
captures the most variation at 70.22%, PC2 follows with 28.81%,
and PC3 captures 0.58%. Figure 3B displays the breakdown
for each component with their individual and then the overall
cumulative values. When the principal components for each
individual trajectory were plotted separate from one another, we
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FIGURE 2
Spindle afferent signals for all end-point trajectories in the forward and reverse directions. Macro-level evaluation of the raw afferent signals reveals
that an individual task trajectory and muscle are significantly more difficult to disambiguate from others before pre-processing. However, a micro-level
observation of the Ia and II afferent signals shows that a muscle will maintain similar dispersion of values (i.e., maximum score, minimum score, and
interquartile ranges) across various tasks, in both forward and reverse directions. [(A), Top Row] Comprehensive view of all raw proprioceptive signals
charted and overlaid together (plotted on main axis) and separated by muscle group (boxed subplots). Pre-processed signals for each muscle are
shown as PC1 vs. PC2 scatter plots. [(B), Middle Row, Left] Distribution and skewness of Ia afferent signals (fiber velocity, or dynamic stretch response)
for each trajectory performed per muscle. [(C), Middle Row, Right] Distribution and skewness of II afferent signals (fiber length, or static stretch
response). [(D,E), Bottom Row] Same as (B,C), but for end-point trajectories in the reverse direction.

were able to perceive discernible shapes that were not visible, but
possibly obscured, in the raw data set. In Figures 3C–G, PC1 and
PC3 revealed projections that closely resembled the prescribed
trajectories and task in the joint kinematic space. Figure 3C,
associated with the Line trajectory, reveals a non-straight line
with slight curvature. Figure 3E captures the full revolution of
the Oscillatory task. One half of the task’s revolution does not

completely trace over the other half, unlike the Line, but overall
afferent response still reveals the sinusoidal shape. The Square
trajectory roughly resembles the planned trajectory, except the sides
are not quite equilateral and roughly resembles a parallelogram.
Some distortion is acceptable here and not indicative of any errors in
the dimensionality reduction of the data. In fact, the results of near-
identifiable shapes emerging from the principal components were
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TABLE 2 Ranges of Ia afferent activity, measured in pulses per second (pps),
for muscle groups averaged across Forward and Reverse directions.

Muscle name Maximum (p) Median Minimum (q)

Anterior Biceps 249.07 199.4 142.22

Iliopsoas 199.33 125.22 64.15

Vastus Lateralis 191.18 165.5 145.77

Semitendinosus 257.17 200.55 150.50

TABLE 3 Ranges of II afferent activity, measured in pulses per second (pps),
for muscle groups averaged across Forward and Reverse directions.

Muscle name Maximum (p) Median Minimum (q)

Anterior Biceps 185.66 130.99 62.55

Iliopsoas 130.16 45.38 .28

Vastus Lateralis 119.855 92.01 67.73

Semitendinosus 194.83 132.08 72.53

surprising and not expected, considering the raw data presented
clusters of oval-like shapes.

Since the pre-processed data were able to be visualized
with 2-3 principal components there was no need to consider
other dimension reduction techniques such as T-distributed

Stochastic Neighbor Embedding (t-SNE) and multidimensional
scaling (MDS). Two or three principal components are usually
sufficient for our plotting purposes whereas for classification or
modeling purposes, the number of significant components can be
properly determined using metrics such as the explained variance.
Here, we were able to conclude that there is a presence of near-
approximate quantitative correlations of joint kinematic and sensory
space of the muscle spindle. The next experimental findings further
use these top three components to determine their usability for state
classification.

3.3 Correlation index reveals markers of
action discriminability, classification

Before pre-processing the afferent manifolds to detect useful
features, cross correlation was performed on the raw data set to
retrieve the correlation coefficient or index value that measures
similarity in movements of two time-series sets of data relative
to each other. To our dissatisfaction, cross-correlation analysis, as
computed from Eq. 13, did not provide sufficient discriminability
among the five states when comparing the raw spindle manifolds.
A positive 50%, the measure of chance, was set as the threshold
for verifying discriminability among the span of possible cross
correlation values where the value −1 indicates a perfect negative

FIGURE 3
PCA Dimensions of Afferents Reveal Distinct Shapes. Principal component plots of pre-processed data revealed shapes that are quantitatively
correlated to the planned trajectory cycles in kinematic space. (A) A three-dimensional PCA plot shows the cluster of samples based on their similarity,
revealing distinctive shapes in space. (B) PCA scree plot of the variance explained by each of the 8 individual principal components are shown here in
blue, with cumulative percentages show in red. The first 3 PCs explain 99.61% of the variance. The two-dimensional plots of the (C) Circle, (D) Line, (E)
Oscillatory, (F) Lemniscate, and (G) Square shapes show more distinction in visual appearance of the trajectory when the PC1 and PC3 variables were
plotted together.
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FIGURE 4
Spread of Discriminability Within Cross Correlation Scatter. Compared to the dense overlap in cross correlations of the raw afferent data for each
muscle group, pre-processing spreads out the correlations and improves discriminability. Depicted here are the cross correlations of all possible
trajectory combinations (n = 45) for the raw information and pre-processed afferent signal information, which are plotted on the left and right,
respectively. Each trajectory pairing has an assigned direction. An R label is for Reverse Direction and an F label is for Forward Direction. For example,
the Circle-Line pairing with label FF indicates Circle going Forward and Line going Forward. The Line-Square pairing of RF indicates Line going in
Reverse and Square going Forward. Cross-correlations were plotted for (A) the combined set of the 4 muscles in the cat limb, (B) Anterior Biceps, (C)
Iliopsoas, (D) Vastus Lateralis, and (E) Semitendinosus. Note that preprocessing the data using PCA produces much greater discriminability among
movements.
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FIGURE 5
Confusion matrices of raw and pre-processed spindle afferent data for the Combined Muscle Sets. The values in each cell describe the likelihood that
two movements cannot be disambiguated from each other. I.e., the more towards green, the greater predicted similarity; the more towards the red the
greater the predicted difference between any two movements. Values below the diagonal in the lower triangle correspond to predictions of similarity
using the raw Ia and II signals. Upper triangle entries represent the predicted similarity after PCA using the first principal components were used here
(as in Figure 4A). We compared across all five trajectories; CI: circle, LI: line, OS: oscillatory, LE: lemniscate, SQ: square in both directions (forward fwd
vs. reverse rev). This comparison is for spindle signals from all four tendons shown in Figure 1. Note that the upper triangle entries demonstrates that
using PCA enables much greater discriminability among movements from spindle signals, compatible with what was found by Rongala et al. (2018) for
tactile signals.

correlation, +1 indicates the perfect positive correlation, and 0 is
no correlation between the paired tasks. Essentially, Rxy(τ) ≥ 0.5
indicates less discriminability among the tasks and Rxy(τ) < 0.5
indicates more discriminability. Assessments for cross correlation
were divided into 5 sensory afferent groups: combined muscles
set (all four muscles combined), Anterior Biceps, Iliopsoas, Vastus
Lateralis, and Semitendinosus. For each of the n = 45 possible
trajectory combinations and pairwise comparisons we plotted their
correlation coefficients, Rxy(τ), spatial scatter visualization for both
the raw afferents and pre-processed afferents as shown in Figure 4.
All raw data correlations for the combined muscle were set at the
8-D (i.e., 4 muscles x 2 afferents) high dimensional space while the
individual muscles were compared in 2-D space. All pre-processed
data correlations for the combined muscle were set at the 3-D space
while the individual muscles were compared in 2-D space.

Let α be the span or bandwidth of the detected correlations in
the cluster and β be the total space of possible correlation values,
where α/β is the percentage covered by the correlations values. Raw
data correlations in the combined muscle set (Figure 4A) show a
tight cluster within a 32.1% (i.e., where α is .646 and β is 2) of
the full correlation range. However, that range expands to 98%
(1.958/2) in the pre-processed set as more pairings move away
from being less discriminable to more discriminable. This form of

expansion was not only evident in the combined muscle grouping
but also in the individual muscle groups (Figures 4B–E). Out of
the four muscles, the Vastus Lateralis (Figure 4D) contained the
most compact clustering in the raw set with the maximal expansion,
spanning a minimal 23% (0.459/2) and expanding to 98% (1.96/2)
in the pre-processed set. We highlight the compact-to-expansion
dynamic that occurs from raw to pre-processed afferents to show the
usefulness of pre-processing in giving each taskmore distinction and
separability to enhance classification.

Furthermore, the usefulness of cross-correlation is additionally
investigated in this study in the context of a state classifier. We
find the display of confusion matrices as heat maps particularly
useful here because of the ability to describe and visualize the
performance of our classification model. The varied patterns
of afferent correlations can be observed for all task trajectories
by noting the shift in discrimination rates of the raw afferents
(lower triangle) versus pre-processed (upper triangle) in Figure 5.
The differences in discriminability vary significantly by each
matrix. Our combined muscle set reports 29% discriminability
among the 10 possible trajectories in the raw 8-D set and
drastically increases to 82% in reduced 3-D pre-proccessed
set, as shown in Figure 5. For the Anterior Biceps muscle
(Supplementary Figure S1A), cross correlation reports 60%
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discriminability in the raw 2-D set and increases to 73% in 2-D pre-
processed set. The Iliopsoas muscle (Supplementary Figure S1B)
reports 66% and 73% discriminabilities, Vastus Lateralis
(Supplementary Figure S1C) reports 0% and 78% discriminabilities,
and Semitendinosus (Supplementary Figure S1D) reports 49%
and 89% discriminabilities, for the raw and pre-proccessed set,
respectively. The difference in correlation between the two groups
(i.e., Raw and PCA) was determined to be statistically significant
(p = 0.001), according to the Wilcoxon signed-rank test, for the
combined muscle group and individual muscle sets.

4 Discussion

In this paper, we focused on using high-dimensional Ia and
II proprioceptive signals from muscle spindles to enable robust
estimates of limb trajectories. In particular, we tested whether the
time histories of such spindle signals suffice to discriminate from
among five limb movements. We find that raw multi-dimensional
sensory ensembles of the muscle spindle remain within a particular
range for each movement and can be discriminated. Secondly, pre-
processed data shows high correlation of spatio-temporal maps
between sensory and motor space. Thirdly, the correlation index
revealed markers of sufficient discriminability and classification
among spindle afferents. Our findings closely match with similar
results from Rongala et al. (2018), where biological data on cuneate
nucleus neuron recordings in adult cats were obtained and modeled
to study generalizable tactile representations. Their work highlights
that the cuneate nucleus forms the first interface for the sense
of touch in the brain. Our results suggest that this may apply
to other proprioceptive sensory afferent pathways such as muscle
spindles. Triangle matrices of correlations, similar to our analysis,
demonstrated howweighted learning in the cuneate nucleus resulted
in decorrelated responses between neurons of the same stimulus.
Essentially this means the data were less ‘confused’ with another
and more discriminable. Here, we have provided an analytical
approach to study and justify the nature and effects of dimensionality
reduction in central or peripheral nervous system (Rongala et al.,
2018; Beyeler et al., 2019) that has been of great focus in the field
of biology which has recently gained greater interest.

Altogether, our findings indicate that sensory afferents from
the muscle spindle can adequately supply the nervous system
with features of discrimination to distinguish one task from
another—but only if there are suitable forms of pre-processing
or filtering to reduce the amount and dimensionality of sensory
information flooding the nervous at a given time during the
selection or performance of an action or task. This is also a
desirable ability for dynamicmodels of body representations or body
schemas in biological (Cisek and Kalaska, 2010; Berry and Valero-
Cuevas, 2020) and neuro-robotics systems (Marjaninejad et al.,
2019; Kudithipudi et al., 2022).

Moreover, the lack of centralized brains or brains with limited
computational abilities in animals (Schwab and Coates, 2003;
Swanson, 2004; Borrelli, 2007; Healy and Rowe, 2007; Cisek and
Kalaska, 2010; Aflalo et al., 2015; Scheffer and Meinertzhagen,
2019; Pipkin, 2020) would naturally benefit from this kind of
‘edge computing’ where even minimal pre-processing of multi-
muscle ensembles of spindle signals improves discriminability of

limb movements (Rongala et al., 2018) and modular cortical and
subcortical functions (Cisek and Kalaska, 2010; Merel et al., 2019;
Li et al., 2020).
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