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Estimating Effective Degrees of Freedom
in Motor Systems
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Abstract—Studies of the degrees of freedom and “synergies” in
musculoskeletal systems rely critically on algorithms to estimate
the “dimension” of kinematic or neural data. Linear algorithms
such as principal component analysis (PCA) are the most popular.
However, many biological data (or realistic experimental data)
may be better represented by nonlinear sets than linear subspaces.
We evaluate the performance of PCA and compare it to two
nonlinear algorithms [Isomap and our novel pointwise dimension
estimation (PD-E)] using synthetic and motion capture data from
a robotic arm with known kinematic dimensions, as well as motion
capture data from human hands. We find that PCA can lead to
more accurate dimension estimates when considering additional
properties of the PCA residuals, instead of the dominant method
of using a threshold of variance captured. In contrast to the single
integer dimension estimates of PCA and Isomap, PD-E provides
a distribution and range of estimates of fractal dimension that
identify the heterogeneous geometric structure in the experi-
mental data. A strength of the PD-E method is that it associates
a distribution of dimensions to the data. Since there is no a priori
reason to assume that the sets of interest have a single dimension,
these distributions incorporate more information than a single
summary statistic. Our preliminary findings suggest that fewer
than ten DOFs are involved in some hand motion tasks. Contrary
to common opinion regarding fractal dimension methods, PD-E
yielded reasonable results with reasonable amounts of data. Given
the complex nature of experimental and biological data, we con-
clude that it is necessary and feasible to complement PCA with
methods that take into consideration the nonlinear properties of
biological systems for a more robust estimation of their DOFs.

Index Terms—Data analysis, degrees of freedom (DOFs), dimen-
sion estimation, fractal dimension, musculoskeletal synergies.

I. INTRODUCTION

THE nervous system is involved with monitoring and con-
trolling possibly many thousands of internal neural and

muscular degrees of freedom (DOFs) as part of its motor control
functions. For this reason, there is growing literature that seeks
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to identify and explain coordinated spatiotemporal patterns of
motoractivity thatactonmultipleDOFsatoncewhenperforming
different tasks, possibly taking advantage of basic biomechanical
properties of the musculoskeletal apparatus [1]–[6].

The presence of correlations between observable variables is
often referred to as “synergies.” From the perspective of this
paper, the presence of synergies results in an effectively lower
number of DOFs in observed motion, which has been called the
“functional” or “effective” DOFs of the system [7]. In this case,
we expect the dynamics of neuromuscular control systems to be
constrained to subsets of relatively low dimension given that, by
construction, the neuromuscular system needs to meet specific
constraints when performing complex tasks such as locomotion
or manipulation. Importantly, those subsets will be context de-
pendent because they are a result of control actions [8] that by
necessity change with task goals. In our consideration of mo-
tion capture data in a D-dimensional data space, the number of
kinematic DOFs of the object is often substantially smaller than
D, and the task goals constrain them to an even smaller task
space whose dimension is smaller than the set of kinematically
feasible postures. The geometry of the task spaces may be suffi-
ciently complex that its size is better described by a distribution
of dimensions than a single number.

The ability to use sensor data to objectively quantify the
number of controlled skeletal DOFs during natural behaviour
is central to the study of neural control of musculoskeletal
redundancy. A long standing problem in this study is whether
and how the nervous system fully exploits the numerous DOFs
provided by the neuro-musculo-skeletal system. For example,
several studies have sought to determine whether the nervous
system couples the mechanical DOFs of the hand to simplify
the control of hand shaping for grasp or sign language [4], [9],
[10]. Other important problems are the estimation of dimension
of the neural controller from electromyographic signals [1] or
extracellular neural recordings from the brain [11]. Theories of
motor learning also address problems of dimension estimation
by proposing that the acquisition of complex tasks progresses
by initially “freezing” some skeletal DOFs and gradually re-
leasing them as the nervous systems is able to incorporate them
into a motor task [12].

This paper discusses algorithmic methods that measure the
dimension in state space occupied by experimentally observed
dynamical behaviours. We compare the performance of three
approaches to estimating the dimension of a dynamical system
from sampled data: two established algorithms—principal com-
ponent analysis (PCA) [13] and Isomap [14]—and a new algo-
rithm that estimates pointwise dimension (PD-E).

PCA, linear regression, and multidimensional scaling [15] are
linear methods that test whether a data set lies close to a linear
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subspace, in which case the coordinates from this subspace can
be used to parameterize the data. However, these methods do
not determine whether the data may lie on a lower dimensional
set within the subspace. Consider an example relevant to human
movement: a single arm rotating relative to the body in a plane.
The kinematic data set is a 1-D manifold, namely a circle in the
plane, that does not lie close to a 1-D linear subspace. Linear
methods select the 2-D plane in which the circular motion takes
place as a minimal state space for these data (see [16] for details
of this example). PCA provides useful information about the
orientation of the plane containing the circle in this example,
but it cannot correctly determine the dimension of this simple
geometric object underlying this simple biological motion.

Isomap [14], local linear embedding (LLE) [17], and Lapla-
cian or Hessian eigenmaps [18], [19] are methods that have been
developed within the setting of machine learning and dimension
reduction to find coordinate systems for nonlinear manifolds.
They include procedures for discovering the dimension of data
sets that lie on smooth (Riemannian) manifolds. Isomap is de-
signed to find a set of global coordinates for this manifold via
singular value decomposition of a matrix of interpoint distances
of the data.

The underlying structure of a biomechanical system gov-
erning, say, locomotion or manipulation, may not be repre-
sentable as motion in a smooth manifold. The structure might
instead decompose as the union of submanifolds having dif-
ferent dimension for different phases in the gait cycle (e.g.,
swing versus double support) or grasp acquisition versus ma-
nipulation. Alternatively, if a biomechanical system exhibits
chaotic motion (as has been suggested as far back as Bernstein
[7, pp. 15-59] in the context of ubiquitous intertrial variability)
musculoskeletal motion is expected to lie on a fractal set. This
paper shows that PD-E aids in the process of exploring these
kinds of geometric structure in data sets, and complements uses
of established linear and nonlinear techniques.

Pointwise dimension is a quantity assigned to probability
densities or measures that are defined on metric spaces. Like
Isomap, algorithms for computing pointwise dimension are
based upon analysis of the distances between pairs of data
points. However, the way in which this information is used is
quite different in the two methods. Algorithms for estimating
the pointwise dimension of attractors of dynamical systems
were developed in the 1980s and applied to many different em-
pirical data sets [20]. Much of this work used a technique called
“delay embedding” to manufacture multidimensional data from
a single (1-D) time series. To use delay embedding effectively,
the time step between successive observations and the number
of successive observations to use in the embedding have to
balanced to account for the sensitive dependence of solutions
to initial conditions, the dimension of the attractor and the level
of independence of observations made at each time step. There
emerged an informal consensus that prohibitive amounts of
data were required by the methods for accurately estimating the
pointwise dimension of high-dimensional attractors [21]. This
paper revisits the numerical estimation of pointwise dimension
in the context of motion capture data, where the emphasis is
upon estimating the dimension of sets that are already em-
bedded in high-dimensional Euclidean spaces.

At a time when linear methods dominate the analysis of
biomechanical data, we have investigated the ability of the
PCA, Isomap, and PD-E methods to estimate the dimension of
relevant synthetic data sets generated from a range of geometric
objects and from experimental motion capture of a robot arm.
We then use these methods to estimate bounds on the DOFs
involved in some hand kinematics tasks. In this paper, we seek
to characterize the phenomenological properties of pointwise
dimension estimates for high-dimensional data sets in prepa-
ration for the future development of a rigorous mathematical
theory. We consider the simple geometric objects as a means to
validate PD-E on sets of known dimension that are adequately
characterized by the well-established methods: we would like
to be confident that PD-E could provide useful information
about the dimension of any unknown data set, including ones
of this simple nature.

II. METHODS

A. Dimension Estimation Algorithms

1) PCA: Assume that we have a data set of observations
in a -dimensional Euclidean data space with . In
the case of our motion capture data, markers are placed upon
an object and analysis of video recordings produces the spatial
locations of these markers, yielding a data space of dimension

. PCA is a linear method for testing whether the data lie
close to a linear subspace whose dimension is .
The first step of PCA is to normalize the data and assemble data
vectors into a matrix . The next step is to calculate
the eigenvalue decomposition of the co-
variance matrix , where

is a matrix whose columns are the
eigenvectors of , and is a diagonal matrix of eigenvalues ,
ordered by decreasing magnitude. Projection onto the subspaces

spanned by the first columns of minimizes a residual of
the original (normalized) data among projections onto -dimen-
sional subspaces of the data space and maximizes the variance
of the projected data.

We define the cumulative sum of the first eigenvalues as
for , and denote its maximum

value . From this, we define the fraction of variance
explained up to dimension as , a monotonically
increasing function of . The corresponding residual (fraction
of variance unexplained) is defined by the monotonically de-
creasing .

Estimating the dimension of the data set from PCA requires a
criterion for choosing a minimal for which the projected data
is an acceptable “reduction” [22]. A frequent choice for this cri-
terion is to set a variance capture threshold, given by the algo-
rithmic parameter such that (e.g., [4]). A second
choice that is seldom used in the biomechanics literature (e.g.,
see [16]) is to select a value of for which there is a “knee” (i.e.,
reduction in slope) in a linear-log graph of the residuals :
i.e., the quantities are substantially larger for
than for . This method is better tuned to the scaling
properties of an individual data set. For PCA, we implement this
criterion by computing the second differences of and
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determine when these are larger than a threshold given by an al-
gorithmic parameter . Where there are one or more consecutive
second differences larger than , we declare there to be a knee
at the local maximum of the second differences (knee positions
can be determined by other algorithms [23] or by eye [24]). We
found that the value caused the algorithm to select knee
positions that corresponded to positions that we judged by eye.

2) Isomap: The Isomap (isometric mapping) algorithm seeks
to reconstruct the Riemannian metric on a submanifold of the
data space and find global coordinates that preserve this metric.
One assumes that the data set of points in lies on a sub-
manifold which is sampled densely enough that the Euclidean
distance between near neighbours in the data set approximates
distance along the manifold. Neighbourhoods consisting of these
near neighbours are encoded in a “neighbourhood graph” with

vertices, one for each data point. Vertices are connected by
undirected edges in this graph in one of two ways: (1) vertex
is connected to its nearest neighbours in the data set, or (2)
is connected to vertices for which the corresponding distances
satisfy . Thus, the parameter of the algorithm is
either or . Geodesic distance between and is then esti-
mated by minimizing the sum of distances along chains of points

which come from paths in the neighbour-
hood graph. The resulting distances form the matrix . The
neighbourhood graph may be disconnected, in which case the
data is partitioned by components of the neighbourhood graph
for further analysis. Here we retain only the component with
the largest number of points.

Isomap then uses the classical multidimensional scaling
method on the matrix , producing a singular value decompo-
sition. We estimate the dimension of the data set with Isomap
using a method similar to that described above for PCA, but
the residual variance is defined differently. The fraction of
variance captured for Isomap measures how much the
matrix of distances between the first singular vectors of
the multidimensional scaling decomposition covaries with .
The residual variance is then , which need not be a
monotonically decreasing function of . We search for either a
minimum (when the function is nonmonotonic) or a point of
maximum curvature (when the function is monotonic). We use
the same criterion for detecting a knee in a linear plot of the
residual variance using .

In all our tests with the Isomap algorithm, we selected evenly-
spaced “landmark” points in the data at a sample rate of 1 per ten
regular data points. As recommended by Tenenbaum et al. [14],
this results in many more landmark points than the expected
dimension of the data and also many fewer than .

Isomap can be run using either a selection of the neighbour-
hood radius or the number of nearest neighbours as the prin-
cipal parameter. As outlined by Tenenbaum et al. [25], we made
a tradeoff between two cost functions in order to select these
Isomap parameters appropriately: the fraction of the variance in
geodesic distance estimates not accounted for in the Euclidean
embedding, and the fraction of points not included in the largest
connected component of the neighbourhood graph and, thus, not
included in the Euclidean embedding of that component.

If or are chosen large enough that all interpoint distances
are retained, then the identity map gives the manifold metric of

the sampled data and Isomap will detect only the dimension of
a linear subspace containing the data. Similarly, when these pa-
rameters are chosen small enough so that only a very few inter-
point distances are retained, the graph of neighbouring points
becomes disconnected or the estimation of geodesic distances
along a manifold are no longer accurate. When these instances
arise in Section III, we will simply indicate that Isomap failed
to produce a dimension estimate.

3) Pointwise Dimension Estimation: We now describe a new
empirical method for estimating the pointwise dimension of a
data set of points in which we refer to as pointwise di-
mension estimation (PD-E).

Algorithms for estimating the pointwise and correlation di-
mensions of data sets assign dimensions to attractors of dynam-
ical systems [26]–[29] in the setting of measures or probability
densities in a metric space, and assume that the data whose
dimension is being determined is distributed like independent
samples of the measure. They do not make use of the temporal
structure of trajectories and can be applied to arbitrary data sets
that give discrete approximations to a probability measure .
We make the hypothesis that there is a task space consisting
of the closure of points in phase space that would be visited if a
task were repeated an infinite number of times or performed for-
ever. Moreover, we assume that there is a task density that de-
scribes the frequency in which different subsets of are visited.
In practice, this means that the -measure of a set (we
call this the volume of ) can be approximated by the propor-
tion of data points that lie in . Methods such as PCA, Isomap,
and LLE presume that, in the absence of “noise,” input data
represent samples from a geometric set with the structure of a
Riemannian manifold. In contrast, pointwise dimension makes
sense for measures supported by a much larger collection of
sets. In contrast to PD-E, PCA, Isomap, and LLE do not explic-
itly utilize the distribution of observed points on the manifold.
Nonetheless, the results of their analyses are affected by this
distribution.

The pointwise dimension of is defined by measuring
the growth rate of balls of radius centered at as a
function of . The dimension of at is

(1)

This limit may not exist and it may not be the same for all points
of . When it does exist, it reflects a power law scaling in which
the volume of balls is proportional to .

We adopt a pragmatic approach to defining pointwise di-
mension in the context of experimentally-obtained data sets

having points. Given a reference point , the distances
between and all other points in the data set are
calculated and sorted. If is the distance in the sorted
list, then we estimate .
This is the key assumption that we make about how the time
series of observed trajectories approximate the task density. A
dimension estimate of for reference point is the asymptotic
slope of versus . The scaling relationship

is equivalent to for
some constant . Thus, if there is a good linear regression
fit of to , then the slope of this line is
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Fig. 1. Two r � V curves for points randomly distributed in a 6-D ball. The
solid curve has a reference point at the center of the ball, and the dotted curve has
reference point (0.57, �0.14,�0.12, 0.37, 0.66, 0.03) . The slopes of secants
between the two vertical markers are 6.1 and 5.0, respectively.

taken as an estimate for . We call plots of versus
curves.

If the curves are linear and have the same slope for
all reference points, then this common slope is the pointwise di-
mension of the data set. However, there are inevitable statistical
fluctuations and other sources of deviations of the curves
from linear functions that occur in this procedure. Fig. 1 shows
two curves for a data set of 3000 independent samples
from the uniform probability distribution in a 6-D unit ball. One
curve has its reference point at the center of the ball, whereas the
second curve has a randomly chosen reference point. The curves
have substantial fluctuations from a straight line at small values
of . The second curve deviates from a straight line also at
large values of . This example points to the need for addi-
tional analysis to extract good estimates of pointwise dimension
from the curves.

Among the sources of variability in the slopes of the
curves are the following.

1) Sampling errors that reflect the difference between the dis-
crete data set and the probability measure .

2) Noise in the data yields measures that are -dimensional,
but only on scales comparable to the amplitude of the noise.

3) The pointwise dimension of the measure may depend
on the reference point and may not exist. This happens in
multifractal attractors of dynamical systems [30].

4) The “shape” of the dataset and affect the slope of the
log-log plot at larger distances from the reference point. In
Fig. 1, the growth of slows as reaches the distance of
the reference point to the boundary of the manifold.

In the absence of firm mathematical foundations for esti-
mating pointwise dimension, we have pursued empirical tests
on observational and simulated data. We have experimented
with techniques for selecting “scaling” regions of the
curves that exclude small distances subject to large sampling
fluctuations and noise, and large distances where the global
shape of the object plays a dominant role in determining the
relationship between volume and radius. We have also experi-

mented with ways of representing the statistical distribution of
slopes with the scaling regions of curves. We assume that
a random selection of a moderate number of reference points
suffices to approximate the distribution of these slopes for the
measure . Unless otherwise stated we select reference
points.

In this paper, we characterize the varying slopes of the
curves in the following way. For the curve of each ref-
erence point , we ignore the five points closest to , and the
furthest 30%. For fractal measures the curves may not be
smooth, so we estimate their slopes with secants. Specifically,
we use the slopes of secants that lie between the excluded re-
gion and have projections on the axis of length .
The minimum and maximum of the slopes of the secants are
recorded for reference point , and are denoted and , re-
spectively. We then calculate the minimum, maximum, mean,
median, and interquartile range of the sets

and defined over the range of
reference points . We plot representative curves for ref-
erence points corresponding to the extrema and the means of
these sets. Scatter plots of all pairs as a function of
illustrate the distribution of slopes found. Points in the scatter
plot corresponding to the extrema and means are highlighted
using a color code (see Fig. 4).

We note that an alternative approach for assigning slopes to
curves based on linear regression was also tested on the

data presented here. That approach produced estimates of di-
mension within the range of the method described here, and is
not described further for the sake of brevity.

B. Computer Generated Synthetic Data

We tested the dimension estimation algorithms on indepen-
dent samples from measures of known dimension. The test
measures we used are uniform distributions on 6-D rectangular
solids and balls. We analyzed points uniformly distributed in a
rectangular solid with sides of unit length, and from one that
has four sides one fifth of the length of the remaining sides
having unit length. This enables us to explore the fact that the
relative length scales of different directions in the data are an
issue for dimension estimation algorithms. We investigated
sample sizes between 2000 and 8000 points.

C. Motion Capture Data for Robot Arm

An AdeptSix 300 robot arm with six rotational joints was
used to produce motion capture data. These data sets tested our
analytical techniques on a real mechanical system that is kine-
matically similar to a musculoskeletal limb.

The “home” configuration of the robot arm can be seen in
Fig. 3(a). Fig. 2 shows a schematic diagram of the arm in this
configuration, showing the local Euclidean coordinate frames
defined around each link. The total length of the links is ap-
proximately 800 mm.

Three reflective markers were attached around each joint (see
Fig. 3) to track the robot’s posture by a 4-camera optical mo-
tion capture system manufactured by Vicon (Vcams and Vicon
Workstation, Vicon Peak, Lake Forest, CA). Table I provide de-
tails of the reflective marker positions using the local coordi-
nate axes for the joints. Marker data were captured at a rate of
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Fig. 2. Schematic diagram of the physical dimensions of the robot arm (units
are in millimeters), including indication of joint axes and their local Euclidean
coordinate frames (used for specifying marker positions).

Fig. 3. (a) “Home” configuration of the AdeptSix 300 robot arm, showing some
of the reflective markers used for 3-D motion capture. (b) Front view of the robot
arm covered in an elastic sheath and marker placement.

TABLE I
APPROXIMATE MARKER POSITIONS RELATIVE TO JOINT AXES IN LOCAL

EUCLIDEAN JOINT COORDINATES (UNITS ARE IN MILLIMETERS)

100 Hz. Only the frames in which all markers were visible and
properly reconstructed were kept in the final data set. The mean
calibration residual of the Vicon marker reconstruction is less
than 0.2 mm. The standard deviation in the reconstructed dis-
tance between two markers on a rigid object is approximately
0.05 mm.

Two experiments were performed with the AdeptSix 300.
In the first, the robot arm was programmed to move to a suc-
cession of joint angles in a random walk that cyclically varies

a single joint angle at each step. Joints were constrained to the
ranges respectively.
The transition time between target postures was approximately
1/3 s. Robot movement did not exhibit extraneous oscillations.

The joint angle targets chosen in the first experiment were
recorded so that the same sequence of targets could be repro-
duced in a second experiment. The second experiment differed
in that we put the entire robot arm inside a tight elastic sheath
(white hosiery made by L’eggs, approximately 80% nylon and
20% spandex, attached by elastic bands around joints 2 and 4),
and re-attached the markers in positions as close as feasible to
their prior positions in the nominal configuration (see Fig. 3).
The sheath was intended to provide a source of systematic noise
in the measurement of the robot’s actual motion, in this case to
mimic the effects of skin in the reconstruction of animal skeletal
motion using surface-mounted markers.

Two and a half hours of data were collected from each exper-
iment, but this was resampled at a rate of approximately one
frame per 3 s, resulting in a data set of approximately 4000
points. We did not filter the kinematic data.

D. Virtual Robot Motion

We further tested our methods with synthetic data of an ideal
simulated robot arm without an elastic sheath. We reconstructed
the geometry of the AdeptSix 300 robot in a kinematic chain
model of the joints, placing the same number of markers in ap-
proximately the same positions. The model was positioned by
setting the six joint angles, and the forward kinematic transfor-
mation from angle space into Euclidean marker space was per-
formed to generate marker positions of the virtual robot.

We used two methods to generate joint angles of the arm.
One method was the same random walk protocol used for the
physical robot. The second was to use independent samples of
a uniform measure in joint space. The same limits on the joint
angles were used as for the physical robot. The chosen angles
were mapped into marker space to obtain the data set.

E. Constrained Hand Motion

We used the Vicon 3-D motion capture system to record kine-
matic time-series data of two informed and consenting subjects
asked to perform three tasks. The protocol was approved by
Cornell University’s University Committee on Human Subjects.
The subjects held their wrists in a fixed position while moving
their fingers. Five reflective markers were placed on each finger
(one at the fingertip and two between each of the joints), three
on the thumb, and four additional markers were placed on the
back of the hand (a total of 27 markers).

The first task was simultaneous “random” movement of fin-
gers close to the plane of the palm. The other two tasks were
the simulation of typing on a computer keyboard and the sim-
ulation of manipulation of a track ball. These tasks were per-
formed for approximately 20 min in four 5-min segments, and
the resulting data sets combined and resampled to select three
frames per second. We discarded frames in which hand postures
caused a failure in the reconstruction of any marker’s position.
This process resulted in final data sets containing approximately
8000 points.
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Fig. 4. PD-E analysis of sample points from a 6-D unit ball. The left panel shows r � V curves for the color-coded points in the scatter plot in the right panel.
These highlighted points indicate the minimum, maximum and mean of the minimum and maximum slopes. Round (square) markers indicate statistics relating to
the minimum (maximum) slopes. The color coding is as follows: red = minimum of (min slopes); yellow = mean of (min slopes); blue = max of (min slopes);
magenta = min of (max slopes); green = mean of (max slopes); cyan = max of (max slopes). The secant end points estimating the minimum and maximum slopes
of the r � V curves are indicated by round and square markers, resp. The solid bar indicates the vertical extent of the secants, equal to log(4). Dotted lines mark
the closest and furthest nearest neighbours considered in the estimation of slopes. The broad distribution of maximum slopes in the scatter plot can be attributed
mostly to the distance of the associated reference point x from the center of the ball.

Fig. 5. PD-E dimension estimates for sample points from 6-D solids: (a) a unit ball withN = 8000, (b) a unit ball withN = 4000, (c) a unit ball withN = 2000,
(d) a unit cube with N = 2000, and (e) a rectangular solid having two sides of unit length and four sides of length 0.2, with N = 2000. For each solid, two
box-and-whisker plots are shown. The left plot indicates the distribution of (min slopes), the right indicates that of (min slopes). In each case, the whiskers mark
the extent of the data (from minimum value to maximum), the boxes mark the interquartile range. The notches indicate the median value. The horizontal line in
the box indicates the mean value. When the interquartile range is very small, the top and bottom of the box is not drawn for the sake of clarity: the range is still
apparent by the distance from the median to the beginning of each whisker. The black triangle between each pair of box plots indicates the mean of the data from
(min slopes) and (min slopes) taken together. The thin horizontal line across each panel indicates the known dimension D of the data set. Panels (a)–(c) show the
relative insensitivity of PD-E results on the number of data points. Panel (d) shows that a nonsmooth boundary in the data does not significantly affect the results,
compared to the smooth boundary in (c). Panel (e) shows that a high ratio of side lengths distorts the distribution of PD-E dimension estimates.

III. RESULTS

A. Computer Generated Synthetic Data

We expect that Isomap and PCA would not detect that di-
mension reduction is appropriate for data sampled randomly
from a uniform probability distribution on a ball or rectangular
solid in . We tested data sets of independent random
samples from a 6-D unit ball, using 2000, 4000, and
8000. PCA at the 90% variance capture threshold determined

, and graphs of PCA residuals and Isomap residual vari-
ances indicated no “knees.” Thus, using PCA or Isomap in this
manner predicts that dimension reduction is not appropriate.
However, PCA at the 80% variance capture threshold deter-
mined , implying that for a sufficiently low threshold
this use of PCA incorrectly predicts that dimension reduction
is appropriate. PD-E analysis accurately estimated by the
median of the maximum slopes of curves (summarized
in Figs. 4 and 5).
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Fig. 6. PD-E analysis for the virtual robot. (a) Uniform distribution of joint angles (Test 1). (b) Joint angles determined by a random walk in joint angle space,
and almost flat regions of some r � V curves are observed for small radii.

B. Robot Arm Data

In this section, we analyze data sets for three motion tasks,
each consisting of 4000 points. Representative curves
and scatter plots from PD-E analysis of the data are shown in
Fig. 6, and the corresponding analysis is presented in Fig. 7.

In Test 1, we consider data from a virtual robot that is randomly
sampled from a uniform distribution in joint space. In Test 2, we
slaved the position of joint 2 to be a smooth function of the posi-
tion of joint 3, according to . In this test, the number of
DOFs of the system are reduced by one, and PD-E, Isomap, and
PCA (using residual variances) all successfully detected this.

In Test 3, we generated data for the virtual robot arm by per-
forming a random walk in joint angle space. One major differ-
ence in these results is the presence of curves with very flat
regions [Fig. 6(b)]. These regions cause the distribution of min-
imum slopes to include values near zero, and as these regions
contain so few points their slopes are not interpreted as dimen-
sion estimates. The initially steep rise of as a function of

before a flat region suggests that there is a small cluster of
data points that are closely spaced in comparison with the typ-
ical distances between other points in the data set. The centers
of the dense clusters are located at distances comparable to the
mean interpoint distances between all points in the data set. This
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Fig. 7. Dimension estimates of virtual robot data sets. Test 1 uses a uniform distribution of joint angles. In Test 2, the position of joint 2 is slaved to be a smooth
function of the position of joint 3. In Test 3, joint angles are determined by a random walk in joint space. The circular (square) markers indicate the dimension
estimation results for PCA (Isomap).

suggests that flat regions in these curves may be due to
the fractal structure of random walks and the low dimension of
Brownian sample paths [31].

Fig. 8 shows the results of our analysis on the experimental
motion capture data from the AdeptSix300 robot arm. The mean
values of the maximum and minimum slopes are close to those
predicted from the virtual robot tests, and the qualitative pat-
tern of point distribution in the scatter plots is similar to that in
the virtual robot results when the method of joint angle genera-
tion is the same [summarized in Fig. 6(b)]. The addition of the
elastic sheath to the robot did not significantly change any of
the dimension estimates, and made almost no difference to the
interquartile ranges of (min slopes) or (max slopes).

C. Hand Motion

Our analysis of four data sets for human hand motion using
is given in Figs. 9–11. This suggests that the di-

mension of hand motion is less than 11, and probably around 6.
The histograms of and also show that there is substantial
variance in the distributions of these slopes between tasks. Fu-
ture work will investigate this as a possible indication that the
appropriate dimension reduction for hand motion may be task
dependent.

In the scatter plots, we observe a large number of points for
which min (min slopes) . The red curves contain
the minimum secant slopes, which occur in the flat regions
of those curves. In the study of the synthetic data sets, we iden-
tified that such flat regions correspond to localized subsets of a
small number of closely-spaced points, and not an indication of
low dimension. In this case, there appear to be many such small

subsets. It will be instructive in future work to identify which
hand postures are associated with these subsets.

IV. DISCUSSION

The characterization of the number of effective degrees of
freedom (DOFs) of a limb or anatomical system under neuro\-
muscular control is a necessary prelude to understanding neu-
romuscular control and developing dynamical models for the
motion of a biomechanical system. The measurement of these
active DOFs is complicated by the fact that voluntary function
limits a system to a subset of its kinematically possible states
which themselves form a nonlinear space determined by me-
chanical constraints. To complement the estimation of the effec-
tive DOFs of a system using linear methods such as PCA, we
compared two ways of using PCA with two nonlinear methods
[Isomap and the novel pointwise dimension estimation (PD-E)
algorithm] that are also designed for this purpose. We compared
the dimension predictions of the three methods using simulated
kinematic data, motion capture data from a robot arm whose
DOFs are known, and for finger motions whose DOFs are un-
known. The dimension estimates for the robotic data are all con-
sistent with the known number of DOFs of these systems. The
estimated dimension of the finger motions is not much larger to
that obtained from the robot. This gives us confidence that the
methods produce reasonable estimates for the number of effec-
tive DOFs of finger motion tasks. We shall pursue further use of
the methods to compare the effective number of DOFs of dif-
ferent tasks and to detect the heterogeneity of their task space
geometries.
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Fig. 8. PD-E analysis of data for (a) the robot arm without an elastic sheath and (b) the robot arm covered with the sheath. (c) Residuals of d-D PCA embeddings
of the robot motion data. (d) Summary of dimension estimation results. The circular (square) markers indicate the dimension estimation results for PCA (Isomap).

Using PD-E we placed a conservative upper bound on the di-
mension of constrained hand motions at roughly 10 for tasks
involving relatively open hand postures. However, we observed
a high frequency of slopes in the range of 2–3 and 5–10 in the

curves, estimates of 1–2 and 4–7 from PCA when de-
tecting knees in the residuals, and estimates mostly in the range
of 4–7 from Isomap. Thus, the combined estimates from the
three methods we have focused on suggest that the neuromus-

cular control of hand motion involves a similar number of DOFs
to that estimated by Santello et al. [4]. In that study, the DOFs
of hand motion were estimated in the very different context of
a task consisting of a wide range of static hand postures for
grasping objects using two methods: PCA yielded an estimate
of approximately 3 DOFs, and a combination of discriminant
analysis and information theory estimated an upper bound of 5
or 6 DOFs.
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Fig. 9. PCA residuals for all hand motion tasks, showing first two knees for each task. Random motion task (subject S2): circle markers; (subject S1): square
markers. Keyboard task (subject S2): triangle markers. Trackball task (subject S1): diamond markers.

The PD-E analysis discovered an interesting property of the
robot data. The robot was programmed to perform a random
walk in a rectangle volume of its state space. Sample paths of
random walks have dimension two in unbounded state spaces of
dimension larger than one. The time scale on which the random
walk appears to “fill” a bounded region depends upon its volume
and can be very long. Some of the PD-E curves from
the robot display prominent flat portions that we believe are
caused by the propensity of the random walk to form “clusters”
of points that maintain close distances to each other, separated
by “flights” between clusters. Flat portions of an curve
represent a range of distances from its reference point that con-
tain few points from the data set. We tested this hypothesis with
our virtual robot by comparing PD-E analysis of time series that
reproduced the random walk driving the robot with time series
generated from independent random samples of a uniform dis-
tribution in the robot joint space. The time series of independent
random samples did not produce flat portions of its curves.
Note that the curves of the finger motion data do display
these flat regions. This analysis bears upon the question of how
long a system must be observed for the resulting trajectory to
produce a good approximation to the system’s task density.

There are three types of processes yielding trajectories
with different time scales for this approximation. Independent
random samples produce a good approximation that is inde-
pendent of the geometry of the task space. If the task space
is a chaotic attractor of a dynamical system, then there is a
characteristic “mixing” time associated with the Lyapunov
exponents for trajectories with nearby initial conditions to
become statistically independent of each other [20]. If the
sampling interval of the trajectory is larger than the mixing

time, then the resulting time series will have the characteristics
of independent random samples. In the case of a random walk,
the relevant characteristic time will depend upon the square of
the radius of the task space because the expected distance that a
point moves in the task space in time is proportional to . In
one of the finger motion tasks that we observed, subjects were
instructed to move their fingers randomly. We suggest that the
flat regions of the curves produced from this data reflect
that their movements resembled a random walk, sampled at
intervals short enough to maintain correlations between suc-
cessive samples. An alternative hypothesis is that the subjects
had certain “preferred” postures that have large weight in their
task space because they returned to these postures repeatedly
during the experiment and rested there long enough to achieve
many observations at those locations.

Our implementation of the PD-E algorithm is suitable for
data sets of a few thousand points, which are feasible and com-
monplace in biomechanical experiments. In [32], we challenged
the idea that a method such as PD-E, that is based on calcu-
lations of a type of fractal dimension, requires unreasonably
large amounts of data. The algorithm can analyze larger data
sets than similar algorithms that calculate a complete matrix of
interpoint distances for points in a data set. Nevertheless, exper-
imental trials that are as long as possible are still necessary (for
any method) to ensure that the sampling of postures from the
robot or hand a) approximate the full distribution of postures
assumed in the specified task; and b) are at a sufficiently low
sampling rate to prevent close correlations between successive
samples. As discussed above, the sampling intervals required to
satisfy b) may depend qualitatively on the type of task being
performed.
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Fig. 10. PD-E analysis of data for two hand motion tasks. (a) Random motion (subject S1). (b) Trackball simulation (subject S1). Notice the presence of flat
regions in some of the r � V curves in both tasks, and the mild flattening of the curves for radii log(r) > 5.

Estimating the effective DOFs from experimental measure-
ments is complicated by the effects of instrumentation noise,
and more importantly by “passive” DOFs of the system that are
inherent in its mechanical properties. For instance, the elasticity
of the skin surface on which we place reflective markers may
add passive DOFs. To test the sensitivity of dimension estima-
tion methods to this type of noise, we explore the effects of a
skin-like barrier covering our robot arm upon the analysis. We
did not filter our kinematic data so that we retained any syn-
ergies in the form of correlated high frequency components of
motion, along with actual noise. Increased noise introduced by
the skin-like barrier was apparent in the data, but had little effect
on the estimated dimensions.

Our results demonstrate that the dimension of task spaces
of nonlinear biological systems need not be uniquely defined.
The entire distributions of interpoint distances derived from an
experimentally observed data set contain valuable information.
The relative simplicity of generating single-valued dimension
estimates by any linear or nonlinear method belies the fact that,
taken alone, those estimates may conceal important information
about the finer structure of those data. For example, the task
space of the system may decompose as the union of submani-
folds having different dimension for different phases in the gait
cycle (e.g., swing versus double support) or grasp acquisition
versus manipulation. The PD-E method we have introduced pro-
duces a distribution of pointwise dimensions that reflect both
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Fig. 11. Dimension estimates of hand data sets. Tasks: Random motion, simulation of trackball manipulation, simulation of computer keyboard use. The circular
(square) markers indicate the dimension estimation results for PCA (Isomap).

noisy data and the heterogeneous geometry of the task spaces
we observe. The complexity of the observed system will affect
how much information is contained in the distribution of
curves beyond what can be inferred from the mean, variance,
maxima and minima of the slopes.

There is little rigorous theory for the effects of finite sample
size in estimating dimension, even for uniform measures on
smooth manifolds. Typically, the slopes of the curves are
smaller than the pointwise dimension of the underlying measure
due to “boundary effects.” These effects are seen most clearly
in the flattening of slopes at large radii, and is inevitable be-
cause reference points generally do not lie close to the center
of a distribution even when that distribution is uniformly sam-
pled from a symmetric geometric object such as a ball. In the
tests on low-dimensional data sets of known dimension, the
median value of (max slopes) gave a good estimate of the
dimension. Isomap performed well on our tests with low-di-
mensional data, when we were able to find control parameter
choices for or that enabled the algorithm to converge. We
compared two methods for obtaining dimension estimates using
PCA. One is based on a fixed variance capture threshold .
The second involves plotting the PCA residuals , where we
looked for gaps in the spectrum of the PCA decomposition by
finding “knees” in the graph. In our tests on data sets of known
dimension, a dimension estimate based on the position of either
the first or second knee was typically more accurate than esti-
mates based on predetermined values of . However, either use
of PCA overestimated the dimension of data that has nonlinear
structure, for instance data sampled from a cyclic motion re-
tracing a closed curve in state space, or from a nonsmooth man-
ifold [32]. PD-E and Isomap performed well on tests involving
cyclic motion, but only PD-E appears to be sensitive to data sets
that can be decomposed into subsets having different dimen-
sions. This structure appears as clustering in the scatter plots and
a multimodal distribution of slopes in the curves, and in

general requires careful analysis. However, in benchmark tests,
our use of minimum and maximum slope statistics was sufficient
to detect the bi-modal structure of data sets decomposing to two
subsets of differing dimension [32]. Tests involving measures of
high dimension are also discussed at greater length in [32].

We conclude from these tests that an algorithm such as the
PD-E method presented here is effective in the qualitative
exploration of complex geometric structure in motion capture
data. This method is intended to complement other methods
and not to replace them. The correspondence between the
estimated DOFs of the virtual and real robots suggest that we
can expect improvement in the accuracy of dimension esti-
mation for experimental data sets by continuing to refine our
methods using abstract test data. Additionally, these numerical
explorations will guide the development of a more systematic
analysis method for the application of the pointwise dimension
to high-dimensional data sets, as well as provide a focus for a
rigorous mathematical theory. For instance, one development
would be to follow a pointwise dimension analysis of a data
set with a parameterization of the low-dimensional manifolds
it identifies. This could be done using PCA or more general
techniques such as kernel PCA [33], and would elucidate finer
detail in the geometric structure of the manifolds and their
orientation in the whole data set.

In summary, we provide several important insights into the
use of fractal dimension estimates for high-dimensional data
sets. We have shown that the use of pointwise dimension makes
the practical analysis of such data computationally feasible, in
that it requires only a few thousand data points and a modest
number of reference points. In contrast to PCA, an inherently
nonlinear dimension estimation method is desirable in situa-
tions where we cannot expect the dynamics generating the data
to be linear. In the context of data generated by complex pro-
cesses such as biomechanical systems it is preferable not to pre-
sume that attractors for the underlying nonlinear dynamical sys-
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tems have the structure of a single smooth manifold. In this re-
gard, PD-E is distinct from other nonlinear dimension estima-
tion methods such as Isomap in that it can be applied to such
nonsmooth sets, and provides information relevant to the ap-
propriate partitioning (or “clustering”) of such data sets. Last,
our method does not presume that the relevant scales inherent
in the data sets are known. Such scales are used as parameters by
methods such Isomap, local linear embedding, etc. However, we
have found that the performance of these methods can be sensi-
tive to these parameters in a way that makes their determination
difficult for the kinds of experimental data sets we consider here.
Instead, these scales emerge from a PD-E analysis, and provide
reasonable values for Isomap’s parameters [32].
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