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Abstract

Body movement and proprioception are inextricably linked.
Movement produces continuous high-dimensional ensembles
of afferent information that provide an internal propriocep-
tive body representation and its relationship to the environ-
ment. Motor function is amenable to recording and interpre-
tation and has been relatively well studied. However, we do
not yet understand how physiological proprioceptive affer-
ents contribute to internal body representations, neuromus-
cular control, and even a sense of agency and self. Propri-
oceptive and motor signals have often been seen as separate,
and to be combined mainly to close feedback loops for neuro-
muscular control. In contrast, ‘active sensing,’ is an emergent
concept for dynamically blending sensory and motor signals.
We extend and formalize active sensing into an integrative
approach—–born out of a neuromechanical perspective—that
sees proprioceptive and motor signals as integral parts of
the same functional and perceptual continuum we call the
Sensory-Motor Gestalt. The Sensory-Motor Gestalt com-
bines formalisms of physics, state estimation, biomechanics,
differential geometry, and physiology to understand the emer-
gence of the self in the context of proprioception and motor
actions in the physical world. Proprioception, by defining
body state, defines feasible (continuous or discrete) motor
actions compatible with that state and the environment. Con-
versely, motor actions produce subsequent, often predictable,
body states. This syntactical relationship leads to an episte-
mological continuum that spans body state, feasible behavior,
agency, identity, and sense of self in organisms and robots.

Introduction of Sensory-Motor Gestalt: Origin
and Definition

“To understand is to perceive patterns.” -Isaiah Berlin

Our computational model of the self begins with Gestalt
Theory. Gestalt (pronounced g@-'shtält), a concept originat-
ing in Austria and Germany, roughly translates to shape,
form, configuration, and unified whole. XX-century Ger-
man psychologist Max Wertheimer utilized this definition to
originally present the Gestalt laws (or principles) of group-
ing for pictorially detailing how the human eye perceives
visual elements (Wertheimer, 1923). These laws are fun-
damental rules illustrating how humans recognize elements
and objects in their visual scene as organized patterns with

meaning. The Gestalt theory of the mind and brain intends
to form an understanding of how humans and animals 1)
comprehend what they are perceiving and 2) obtain mean-
ing from the world with disordered visual stimuli.

In its original formulation, Gestalt laws aim to reduce
complex visual scenes into simpler, less complex shapes to
can convey an image’s meaning in a single formation in-
stead of disparate smaller elements. Hence by being a criti-
cal aspect of the perception of patterns into a coherent whole
for context and meaning, Gestalt plays an important role in
combining epistemology (i.e., study of knowledge and how
does one come to “know”) and ontology (i.e., study of what
is the nature of the self) (Guarino et al., 2009). This paper
proposes underlying mechanisms for brain-body dynamics
to merge proprioceptive and motor elements into an epis-
temological continuum from sensory and proprioceptive in-
put, to state of the body, to feasible motor action, to useful
behavior, to the sensory consequences of action— and then
on to more abstract notions of agency, identity and sense of
self in organisms and robots.

In this study, we focus on proprioception as spike trains
from muscle spindles (II and Ia) and Golgi tendon organs
(GTOs). They primarily encode muscle fiber length and ve-
locity, and tendon tension, respectively. These propriocep-
tive signals are known to inform various perceptual modal-
ities of body state (e.g., postures, movements, forces, limb
stiffness, alertness). Recent exponential growth in literature
relating proprioception to subjective experiences (Figure 1)
may suggest that the debate about the emergence of the self
is advancing. We hypothesize that Gestalt laws can be ap-
plied to organizing these physiologically-tenable proprio-
ceptive signals to construct a totality of what is perceived
as the active body. We seek to do the same for motor actions
by developing a mathematical description of the set of plau-
sible motor actions conditional on proprioceptive signals.

Our prior simulation work characterized the high-
dimensional, non-linear, time-varying manifolds of mus-
cle spindle afferents (Ia and II encoding, roughly, mus-
cle fiber contraction velocities and lengths, respectively)
that emerge during movement of a planar multi-muscle
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Figure 1: Published article count per year that indicate asso-
ciation between subjective experiences and sensory modal-
ities. This chart similarly models a previous search con-
ducted by Faivre et al. (2017), in which the number of ar-
ticles published mentioned the words “awareness” or “con-
sciousness” in conjunction with words denoting each sen-
sory modality: “Visual” or “vision” (magenta), “proprio-
ception” or “movement” (yellow), “auditory” or “audition”
(red), “touch” or “tactile” (cyan), “olfaction” or “olfactory”,
and “multisensory” (black). Our PubMed search extended
the year range from 1950-2019 and added proprioception.
Along with vision, proprioception showed a significant in-
crease in documented work.

limb (Berry et al., 2017). We provided initial evidence
that high-dimensional muscle spindle proprioception defines
limb states that reflect the consequences of motor actions.
We now extend that work by emphasizing that each limb
state, by its physical nature, only has a well-defined set of
feasible motor actions. This results in a formal sensory-to-
motor-to-sensory map that defines both the current propri-
oceptive states and feasible motor commands (i.e., plausi-
ble motor actions) that will lead to new (but expected) pro-
prioceptive signals. The Sensory-Motor Gestalt applies to
both biological and engineered agents where the concepts
of state, observability, and controllability are intimately re-
lated; therefore, providing a basis for constructing an artifi-
cial core of state, agency, identity and ultimately self.

To our knowledge, this is a first attempt to formally ap-
ply the laws of Gestalt to the encoding of the sense of
agency, identity and self via proprioception. This article
first builds the concept of Sensory-Motor Gestalt from the
generic Gestalt theory. We then interpret the Sensory-Motor
Gestalt in the form of mathematical encoding for each of the
core laws, which may be integrated to form the sensorimo-
tor self. How the self is directly related to sensorimotor ex-
periences of neuromuscular systems is then explored while
providing sample platform applications to support Sensory-
Motor Gestalt, both biological and in bioinspired robots.

Sensory-Motor Gestalt: Applying Gestalt
Laws to Sensorimotor Function

“The whole is greater than the sum of its parts” is the pop-
ular adage Gestalt psychology is best known for. It em-
phasizes the fact that although a sensory experience can
be disassembled into individual components (i.e., stimuli),
the way in which those components coalesce together gen-
erates properties and qualities of the whole that only exist
independently of their components. Stimuli patterns pre-
sented as a whole often prompts a more meaningful percep-
tual response. As alluded to earlier, Gestalt theory is typi-
cally associated with the visual sense and visual perception
(e.g., object and shape recognition, coloring, arrangement
of parts) that is used to process graphic designs and images
(Figure 2). Rarely has Gestalt theory been applied to other
sensory modalities such as haptic (Chang, 2007), auditory,
and olfactory senses which can all be topographically rep-
resented on a multi-dimensional space in the depiction of
manifolds (i.e., coherent and continuous lower-dimensional
subspaces embedded in a higher-dimensional space). In-
terestingly, the functional mechanisms of Gestalt laws are
active in other cortical areas of the brain and not solely in
the visual processing centers. As the brain’s neural process-
ing is responsible for stitching together the visual scene of
the external world in the primary sensory cortices and also
seamlessly binding raw multisensory information to project
a single unified experience, we theorize there are benefits in
extrapolating ideas of Gestalt laws of perceptual grouping
from vision to other modalities of the body such as the so-
matosensory system. Gestalt theory typically consists of five
core laws that govern the fundamental organization of per-
ception: Laws of Proximity, Similarity, Closure, Continuity,
and Prägnanz.

Law of Proximity
Within visual perception, objects in space or points on a
plane that are near or proximate to each other have a ten-
dency to be grouped together in a single unified set. Con-
versely, points that are further apart have a lesser likelihood
to be viewed as conjoined (see Figure 2a). This law is use-
ful for organizing information with increased speed and ef-
ficiency. There are several ways in which proprioceptive in-
formation can also be processed to yield proximity metrics.
One of the earlier attempts to address the Law of Proximity
is the Pure Distance model (Kubovy et al., 1998), which at-
tempts to quantify visual proximity grouping in dot lattices
with an attraction function that measures the probability dis-
tribution of grouping.

Several algorithms can process proprioceptive stimuli in
this manner. Consider our prior work (Berry et al., 2017)
on the simple case of spindle model output of a single mus-
cle fiber, which is 2-D Ia and II afferent spike trains over
time. Figure 3 shows a higher-dimensional case of a simu-
lated human arm. When examining proprioceptive signals
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Figure 2: Gestalt laws of perceptual organization for topological manifold data can be applied using these core laws: (a) Law
of Proximity aims to group elements together based on spatial closeness. Black dots, red dots, and green dots are perceived as
separate groups due to the nearness of columns. (b) Law of Similarity groups the elements of black dots and red squares as
separate sets, although spatial distance between each element is consistent. Shape, orientation, and color are the distinguishing
factors. (c) Law of Closure prompts pattern perception of a green square and black oval despite the non-continuous outline
and presence of gaps. (d) Law of Continuity perceives the figure as a green dotted line and a separate black dotted line due
to the observed fluid connection of continuity and direction. (e) Law of Prägnanz (i.e., pithiness, conciseness, or Good Form)
takes the abstract shape, as depicted on the left, and perceptually reorganizes them into a simple, more recognizable forms as is
depicted on the right with the colored circle, triangle and square.

that are encoded as spike trains in units of pulses per sec-
ond (pps), we are presented with unlabeled sample points
(x1, x2, . . . , xn), where n is the set of observations, that can
be further mathematically expressed to form representations.
Since the notion of proximity is to associate observed points
by measurement of Euclidean distance, then a standard un-
supervised algorithm such as the K-Means clustering (i.e., a
simplified version of vector quantization) proves to be suffi-
cient for revealing underlying data structure.

Law of Similarity
Elements (e.g., points) that are similar in visual appearance
in at least one degree with alike components are more likely
to be grouped and organized together perceptually. The Law
of Similarity generally spans the attributes of orientation,
texture, color, and shape (see Figure 2b). There are ways to
apply this law to the manifolds produced by proprioceptive
signals. Considering the contours and curves that emerge
from the collection of proprioceptive manifolds (e.g., Fig-
ure 3), shape is the most applicable attribute when mea-
suring for similarity. Shape dimensions, such as curvature
and elongation, can be perceived as integral dimensions and
also used for comparison for similarity. In a similar fash-

ion that Boyer et al. (2011) quantifies geometric similarity
of anatomical surfaces and morphological identification, we
can apply statistical analysis when viewing the Ia and II
stimuli as a collection of discrete or continuous points on
an anatomical surface. Measures of similarity of each af-
ferent signal across various tasks can be applied across the
collected time-series data using signal processing. Compa-
rable to the Law of Proximity, K-means clustering may also
be used here if measuring ’similarity’ of clusters by its rela-
tion to Euclidean distance of data points.

cos ✓ =
�!x ·

�!y

k
�!x k k

�!y k
=

Pn
1 xiyipPn

1 x2
i

pPn
1 y2

i
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In our example, let x and y be two vectors of afferent
spike trains, Ia and/or II. The cosine similarity function is
a measure of similarity that can be used to compare affer-
ent signals in the inner product space. Using the cosine
measure, we have Eq. (1) where �!x ·

�!y =
Pn

1 xiyi =
x1y1 + x2y2 + · · · + xnyn is the dot product of the two vec-
tors. A cosine similarity, cos ✓, value closer to 1 indicates a
higher propensity for perceptual clustering along the mani-
fold. The convolution function would be another choice that
quantifies similarity over time for all possible lags between
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Figure 3: Spike trains from spindle afferents produce an evolutionary high-dimensional time-varying manifold of raw afferent
information that is distinct for different arm movements. Using parallel coordinates, we show the Ia Group Afferent in 50,000
time samples for the case for a 6-muscle, 2-joint simulated planar arm performing the Lemniscate (figure-of-eight) trajectory
with the end point (Berry et al., 2017). The coordinates are colored according to the segmented locations within the duration
of the Lemniscate trajectory. The shadow boxes to the left and right of the manifolds are scaled-down sample snapshots of the
data for the Deltoid Anterior and Anconeus muscles, respectively; ultimately revealing their specific cluster ranges.

signals.
Another option is cross correlation. It compares the time-

series of afferent data across tasks, and is represented as the
ratio in Eq. (2), where n is the total number of data point in-
dices recorded per task cycle. Both xi and yi are the individ-
ual spindle afferent sets, Ia and II, respectively. A temporal
shift delay, phase lag ⌧ , of the output cross correlation, Rxy ,
measure is applied to determine where the correlation of the
data is maximized, as shown in Eq. (3).

Rxy(⌧) =

Pn
i=1(xi � x)(yi � y)pPn

i=1(xi � x)2
Pn

i=1(yi � y)2
(2)

⌧estimated = arg max
⌧2R

(Rxy(⌧)) (3)

Magnitude-squared coherence is similar to correlation ex-
cept that signals are compared in frequency !, instead of
time space, as shown in Eq. (4), which values satisfy 0 

Cxy(!)  1. Sxy(!) represents the cross-sprectral density
between x and y, while Sx(!) and Sy(!) are the autospec-
tral densities for their respective signals.

Cxy(!) , kSxy(!)k2

Sx(!)Sy(!)
(4)
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Lastly, Kullback–Leibler (K-L) divergence is a means to
quantify the likelihood that the statistics of a given process
are similar to that of another, Eq. (6). Probability distribu-
tions P and Q are measured in comparison to reveal the rel-
ative entropy. This is particularly useful because it measures

how much information is lost when we approximate distri-
butions.

D(P k Q) =
X

x2X

P (x) log

✓
P (x)

Q(x)

◆
(6)

Law of Closure

The Law of Closure is the tendency to complete unfinished
or partially obscured objects. Here, incomplete figures are
seen as complete or whole as depicted in Figure 2c. War-
shall’s Algorithm (Warshall, 1962) may address this through
its approach in computing the transitive of a node relation in
a graph. We can envision, that as clusters are being formed
via other laws, state nodes will eventually emerge from the
aggregate data. To establish state transitions from one affer-
ent cluster to another, the Warshall algorithm can determine
whether a vertex j is ’reachable’ from another vertex i for
all vertex pairs within the graph. This measure of reachabil-
ity will serve as the transitive closure, indicating directions
and where paths exist for point-to-point movement across
the manifolds.

This law states that, given available information, there is
the expectation (based on prior personal experience) of clo-
sure when a fragmented version is presented. Bayes’ Rule
is a formal way to represent such expectation in the case
of visual information, visuomotor perception (Körding and
Wolpert, 2004), and now proprioception. Bayes’ rule states
that we can obtain the posterior distribution (the probabil-
ity of a given body state given current proprioceptive input
p(xtrue|xsensed) by taking into account the likelihood dis-
tributions of the prior (i.e., the cumulative information from
prior experience) and the evidence (i.e., the current proprio-
ceptive input xsensed):
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p(xtrue|xsensed) = p(xsensed|xtrue) ⇤
p(xtrue)

p(xsensed)
(7)

where p(xsensed|xtrue) is the likelihood of a particular pro-
prioceptive input xsensed when the perceived body state re-
ally is true. This then allows the inference of the current
body state given past experience and incomplete or polluted
proprioceptive inputs.

Law of Continuity
Objects and points that are co-linear and follow the same di-
rection will be grouped together as a whole (see Figure 2d).
We can construct proficient continuations between neighbor-
ing local environments. Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) identifies outliers as
noises. The Mean-shift algorithm, Eq. (8), actually includes
them in the cluster despite differences of the data point. DB-
SCAN also does not require a pre-set number of clusters, and
discovers arbitrarily shaped clusters. These are key facets
for analysing proprioceptive data.

Given the manifolds of afferent information for natural
movements are usually continuous, then the Law of Conti-
nuity would naturally apply as the manifold during a move-
ment continues along a particular path, even if temporarily
disrupted or occluded by a perturbation. In practice, Bayes’
Rule is a way in which such expectation of continuity can be
quantified.

Law of Prägnanz (Good Form, Clarity)
The Law of Prägnanz focuses on simplicity and will prompt
visualizations according to the simplest way of grouping
items. We perceptually organize shapes to simple forms,
as in pithiness. The Law of Prägnanz is the tendency to in-
terpret ambiguous images as simple and complete vs. com-
plex and incomplete. An example is how shapes overlapping
each other can cause ambiguity, as shown in Figure 2e. A
potential resolution is an iterative method such as Mean-shift
Clustering, Eq. (8), where N(x) is the neighborhood of the
set of points, x. Depending on the Gaussian kernel band-
width, Eq. (9), the Mean-shift algorithm iteratively shifts
points until there is a convergence of partitioning the clus-
ters into semantically meaningfully groups. This is probable
to work well with proprioceptive afferents as it may account
for the noise in signals which is expected, and necessary for
physiological function.

m(x) =

P
xi2N(x) K(xi � x)xiP
xi2N(x) K(xi � x)

(8)

K(xi � x) = e�ckxi�xk2

(9)

Dimensionality reduction is probably the most com-
monly applied (and potentially misinterpreted) analysis of

high-dimensional motor signals (Kutch and Valero-Cuevas,
2012). It is simply a way to quantify whether a high-
dimensional ensemble of signals evolves (i.e., has vari-
ance) along all dimensions equally, or inhabits a lower-
dimensional subspace. Conceptually, it is just the singular
value decomposition of a covariance matrix, where the num-
ber of ‘large’ singular values (principal components) quan-
tifies the rank of the covariance (the effective ‘dimension-
ality’ of the data), and the left singular vectors (principal
vectors) form a basis for those dominant variances (the ba-
sis for the effective subspace the data inhabit). Independent
Component Analysis and Nonnegative Matrix Factorization
is a variations on this idea that do not require orthogonal-
ity of the basis vectors, and the latter also imposes a non-
negative constraint on the elements of the basis (as neural
signals are conceptualized as intensities or spiking frequen-
cies that are > 0). It is good to see that some work is
beginning to be done on dimensionality reduction in tac-
tile afferents, which are famously difficult to record from
even in animal preparations (Rongala et al., 2018). Our cur-
rent work is beginning to apply dimensionality reduction to
higher-dimensional simulated proprioceptive signals Berry
et al. (2020).

Supplementary Laws
Other Gestalt grouping laws that can be applied to sensory
stimuli integration include the Laws of Focal Point, Symme-
try, Common Fate, Common Region, Synchrony, Convexity,
Isomorphism, Parallelism, Unity, Element Connectedness,
and Figure vs. Ground.

Functional Utility of the Sensory-Motor
Gestalt

Figure 4 describes our working hypothesis of the Sensory-
Motor Gestalt in operation. At any time point, propriocep-
tive (and other sensory) information define a state of the
body that lies within a particular manifold of like inputs
(Laws of Proximity and Similarity) and feasible next states
(Laws of Continuity and Closure). Such body state allows
feasible transitions to ‘next’ proprioceptive states via feasi-
ble motor actions that will lead to a, usually predicted, new
body state (Laws of Continuity and Closure).

Abstracting Self from Sensorimotor
Experiences for Neuromuscular Systems

Now let’s examine how the foundations of neuromuscular
systems can provide context to constructing the minimal op-
erative self via proprioceptive signals. In Nature, proprio-
ception provides animals with awareness of the state of their
body and of their relation to the environment. Propriocep-
tive signals arise from mechanoreceptors that reflect the state
of tissues, which are driven by muscle forces, joint and body
postures, and skin deformations. When integrated with other
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Figure 4: We envision the representation of minimal self as
a collection of categorized states in RN space formed from
sensory and motor maps, and made useful by the agency
they provide. Our data-driven projection method catego-
rizes the set of feasible inputs from muscle spindles for each
specific task performed (i.e., arm reach, sit, squat, standing)
as a manifold. Transitions from one state to another occur
through point-to-point transitions along the manifold. The
high-dimensional space of afferent modalities has an under-
lying structure given by the anatomy of the body and the
physical transitions it can undergo such as changing postures
via self movement.

sensory modalities, this reflection of body state at any given
moment in time and space provides the nervous system with
an overall representation of bodily position, actions, and task
experiences. Neuroscientists have long been intrigued with
how the brain represents the body and forms models of bod-
ily states through proprioception (Graziano, 2000). How-
ever, there is still no consensus regarding how these repre-
sentations, facilitated by multi-muscle control, compartmen-
talize and process high-dimensional afferent information as

continuous feedback for ongoing tasks.
The fundamental formulation of a control law for a linear

system (without loss of generality) is

ẋ = Ax + Bu (10)

where the outputs y (and therefore sensory and propriocep-
tive signals) are a function of the state x and the control sig-
nals u

y = Cx + Du (11)

By definition, the equations of motion (i.e., ẋ = Ax) are
an important determinant of the feasible transitions away
from any given state. Moreover, changes in sensory and
proprioceptive signals are driven by changes in state (i.e.,
y = Cx). This is a formal way to conceptually anchor some
aspects of the Sensory-Motor Gestalt. Please note we do not
claim or endorse that the engineering concept of ‘state’ ap-
plies to biology. But the Sensory-Motor Gestalt is a formal
way to describe how the stream of sensory and propriocep-
tive signals is useful to biological behavior in a way that is
agnostic to how those signals are processed.

We can conjecture how the nervous system processes in-
coming afferents (e.g., proprioceptive signals) by observ-
ing how neural activation commands mathematically map
to mechanical outputs, as shown in Figure 5. Neural com-
mands simply refer to the nervous system’s distribution of
excitatory impulse signals to activate muscle tissue. For
tendon-driven limbs, Valero-Cuevas (2016) emphasizes that
the nervous system’s primary function is to use (i.e., learn,
explore, and exploit) the set of feasible neural commands
from the optimized activation space with dimensionality of
vector a 2 RN , where N is the number of independently
controlled muscles. From activation space, vector spaces are
successively mapped to muscle force space, to joint torque
space, then lastly to output wrench space to produce a set of
feasible mechanical outputs (forces and movements).

In prior work (Berry et al., 2017), we have extrapolated
this perspective of muscle redundancy to feasible sets of
proprioceptive signals, called Feasible Sensory Sets (FSS).

Figure 5: The neuromechanical perspective of how sensory inputs are transformed to motor outputs (adapted from Valero-
Cuevas (2016)). A Feasible Sensory Set (FSS) defines the afferent stimuli that are plausibly detectable for a given state of
the body (i.e., joint posture, force production, and kinematic task). By incorporating the influence of proprioceptive space via
neural spike firings, an under-constrained mapping of transformations can be reinforced from neural motor commands in the
Feasible Activation Sets (FAS) to mechanical outputs (limb movements).
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Figure 6: Test-bed applications for Sensory-Motor Gestalt implementation in tendon-driven systems. The Gestalt can provide
state cases and their feasible transitions along the manifold for agents. (a) Proposed neuromorphic cat-like robot and limb in
hardware. Image adapted from Marjaninejad et al. (2019). (b) Various hand and finger states depicted using the American Sign
Language. The nervous system registers the proprioceptive feedback generated with each hand shape is unique to each letter
signed with gestures.

These are defined by a body’s anatomical structure and the
mechanical tasks being performed. Here, we first introduced
the concept of trajectory-specific proprioceptive manifolds,
which are the unique multidimensional and time-varying
combinations of afferent signals that obligatorily emerge
during a limb movement. We demonstrated that a given
movement gives rise to a distinct sensory manifold embed-
ded in the 12-D space of spindle information that is largely
independent of the choice of muscle coordination strategy.
These are referred to as manifolds because they are a sys-
tematic collection of points (i.e., spindle neural spikes) that
provide information for its control.

Following this work it remained unknown whether spin-
dle signals suffice to discriminate limb movements. We
used a 4-musculotendon, 2-joint cat hindlimb model to sim-
ulate muscle spindle length and velocity signals (II and Ia,
respectively) during repeated cycles of five distinct end-
point movements, similar to the manifolds in Figure 3. In
Berry et al. (2020), we concluded that proprioceptive infor-
mation can usefully discriminate limb states—but only af-
ter conducting minimal pre-processing of high-dimensional
multi-muscle ensembles to low-dimensional subspace com-
ponents. This finding may this explain the documented sub-
cortical pre-processing of afferent signals of various mam-
mals (Rongala et al., 2018). It is this resulting set of con-
strained sensory signals that we believe could suffice as a
minimal representation of the artificial self and should be

incorporated into the Sensory-Motor Gestalt paradigm. We
project the usefulness of Sensory-Motor Gestalt to be a suit-
able core to execute on different applications that utilize neu-
romuscular dynamics, incorporate neuromorphic and bio-
inspired architectures, and classification of human bodily
states (Figure 6).

Role of Self and Identity in Autonomous
Robotics and Synthetic Biological Agents

A semblance of selfhood, identity, and agency should be ex-
pected outcomes for constructing a dynamic sensorimotor
representation (Thompson, 2005). For robots, concepts of
identity are typically viewed as a necessity for interactions
in social environments (Duffy, 2004). For humans, the self
and identity combination are purposed for storing the traits,
stereotypes, characteristics, and roles they play in social set-
tings. What features constitute a person’s self? How do dis-
parate sensory perceptions cohesively fuse together to form
a singular experience of self? Although these questions are
typically addressed within the human scope, we can also ap-
ply these inquires to autonomous robots that are bioinspired
and create their own experiences with action.

It is our opinion that sensorimotor contingencies (dis-
cussed in Related Work) do not achieve their full potential
if solely used to estimate error signals in closed-loop con-
trollers. We believe one can ask the extent to which these
contingencies facilitate and embody a self, reflect an iden-
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tity, and activate agency needs to be thoroughly explored.
Self and identity are often used interchangeably to encap-
sulate the entirety of individual’s behavior, character, and
the restricted contextual constraints in which they operate
within. However, it is important to clearly know the dis-
tinctions of these terms if we’re determined to adequately
construct models that emulate their functions.

Agency is known as the control of intentional actions and
volition; leading to the ability to plan and action ownership.
For the purpose of our study we distinguish the self and
identity according to Oyserman’s (2012) conceptualization.
It is thought best to consider self, self-concept, and iden-
tity as nested elements: self is the top-tier construct, self-
concepts reside within the self, and identities reside within
self-concepts. Oyserman defines self as the ability to con-
sider oneself as an object. The self maintains reflexive ca-
pacity that is able to direct an agent to what is “me”; it is the
focal point of personal account and a reference for anchoring
temporal sequences of events (e.g., memory recall). Identi-
ties are “content and readiness to act and employ mindsets
to make meaning.” Personal identities are the traits, char-
acteristics, values and goals belonging to the agent. Alto-
gether self and identity are mental concepts, social products,
and forces of action. As Oyserman states, what makes this
nested unit interesting is that they appear to predict behavior
over time. What is not fully understood by many in literature
is how this happens.

Related Work
Further research into the topic of dynamic sensorimotor
representations led us to original work on the sensorimo-
tor contingency theory (O’Regan and Noë, 2001), which
has motivated an assortment of studies in the area of hu-
man perception as it relates to understanding the nature
of actions and their sensory effects. Sensorimotor con-
tingencies derived from the notion that vision should be
treated as an environmental exploratory activity. According
to Hay et al. (2018), sensorimotor contingencies spawned
multi-disciplinary projects that investigated how to model
the action-sensory relationship of robotic systems, which
spanned the manipulation, classification, and categorization
of external objects. The researchers view the goal for most
of these studies as autonomous robots learning skilled be-
haviors via learning the structure of complex sensorimotor
spaces and how actions affect the environment. Despite
these contributions, Buhrmann et al. (2013) believed there
have been few attempts to formally define sensorimotor con-
tingencies, which they view as a prerequisite for testing this
approach via models and empirical study. The sensorimo-
tor contingencies view on perceptual awareness have also
been criticized for lacking a suitable foundation in the bi-
ology of autonomous agency. Prior work on building com-
putational approaches of body representations, self, identity
and Gestalt have been attempted with a grounding in min-

imal embodied, psychological and cognitive aspects (Gal-
lagher, 2013). One drawback of past implementations is
that they’re unencumbered with understanding the manifold
of feasible transitions, which therefore leads to the incor-
rect perspective that any action is permissible. Our approach
addresses how the sensorimotor self should constrain one’s
agency and perceptual space to feasible tasks. Attempts to
create sensory-to-motor maps as a body representation (i.e.,
body schema) have been accomplished by achieving robotic
self-recognition using a dynamic Bayesian network (Gold
and Scassellati, 2009), online learning of arm reaching mo-
tor maps for humanoid robots using open and closed loop
control (Gaskett and Cheng, 2003), body representations as
cross-modal map learning of invariance in multi modal sen-
sory data (Yoshikawa et al., 2003), and estimation of a kine-
matic model for serial robots (Martinez-Cantin et al., 2010).
To our knowledge, our approach is the first that considers
the inherent link among the feasible capabilities of the body,
the feasible sensory information that will emerge, and the
physics of the world as the manifold defining agency, and
therefore delineating the concept of self.

Conclusion
The emergence of self and its role in biological and artifi-
cial agents continues to be a subject of debate across many
disciplines; leading to the perception that there is a lack of
congruence among perspectives. The absence of a unified
concept of self presented us with an opportunity to propose
a sensorimotor mechanism by which the self can emerge,
via the Gestalt laws of perceptual organization, in the con-
text of artificial systems operating in the physical world (i.e.,
robots). This enables us to investigate the foundation of self,
identity, learning, and agency as the multifaceted interplay
of proprioception and action while exploring their implica-
tions to autonomy. The emergence of self through senso-
rimotor interactions has applications ranging from a self-
other distinction to ‘social’ systems for robot-human and
robot-robot interactions. Traditionally, self and identity are
considered to be theoretical concepts, social constructs, and
therefore enablers of agency. We visit these concepts in re-
verse order to propose that it is sensorimotor agency that
can enable the emergence of self and identity—which is an
evolutionarily plausible order of events (Wilson, 1999). The
Sensory-Motor Gestalt provides a solid foundation to enable
such cross-fertilization to move towards the creation of truly
autonomous and versatile robots, and promote advances in
artificial intelligence.
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