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Design and Control of Tensegrity
Robots for Locomotion
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Abstract—The static properties of tensegrity structures have
been widely appreciated in civil engineering as the basis of ex-
tremely lightweight yet strong mechanical structures. However,
the dynamic properties and their potential utility in the design
of robots have been relatively unexplored. This paper introduces
robots based on tensegrity structures, which demonstrate that
the dynamics of such structures can be utilized for locomotion.
Two tensegrity robots are presented: TR3, based on a trian-
gular tensegrity prism with three struts, and TR4, based on a
quadrilateral tensegrity prism with four struts. For each of these
robots, simulation models are designed, and automatic design of
controllers for forward locomotion are performed in simulation
using evolutionary algorithms. The evolved controllers are shown
to be able to produce static and dynamic gaits in both robots. A
real-world tensegrity robot is then developed based on one of the
simulation models as a proof of concept. The results demonstrate
that tensegrity structures can provide the basis for lightweight,
strong, and fault-tolerant robots with a potential for a variety of
locomotor gaits.

Index Terms—Genetic algorithms, locomotion, tensegrity.

I. INTRODUCTION

THE conventional design of locomotor robots has been
based on a series of rigid links connected by prismatic

or revolute joints, actuated using electric motors or pneumatic
or hydraulic actuators. The majority of legged robots have
been based on this design [20], [39], although, in some robots,
geared towards dynamic gait, the actuators have been sup-
plemented with series elastic elements [37] or replaced with
passive compliance [4], [38]. In this study, the goal was to
depart from this conventional design methodology and explore
a new paradigm in the mechanical design of locomotor robots,
based on the concept of tensegrity. Tensegrity structures are
volumetric mechanical structures composed of a set of separate
rigid elements connected by a continuous network of tensional
elements. Due to an intricate balance between the tensile and
compression forces in the structure, the structure is maintained
at equilibrium. When a moderate deforming force is applied at
one point of the structure, only a transient change is effected
in the global form, after which the structure once again returns
to its equilibrium configuration. Only in some cases, can the
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structure be “locked” into a two-dimensional (2-D) form with
a specific sequence of forces.1

Tensegrity structures were first invented by Snelson in 1948
and formally patented by Buckminster Fuller in 1962 [16], who
coined the word tensegrity as an abbreviation of tensile integrity.
The general definition of a tensegrity structure is a structure
that maintains a stable volume in space through the use of dis-
continuous compressive elements (struts) connected to a contin-
uous network of tensile elements (cables) [35]. However, there
is some disagreement regarding the more specific characteris-
tics that define a tensegrity structure. For example, according to
Connelly and Black [8], in a tensegrity structure, vertices con-
nected by a cable may be arbitrarily close, but they may not be
further than the length of the cable joining them. This defini-
tion works well when the cables are made of inelastic material.
However, when elastic cables are used, the vertices may be fur-
ther apart than the remaining length of the cable, if appropriate
force is applied. Other definitions have variations in the level
of spatial proximity allowed between the struts. In the defini-
tion of a class I tensegrity structure [3], the struts cannot share
common vertices, that is, they must be physically separated in
space. However, the definition of a class II tensegrity structure
allows more than one strut to originate from a vertex. Finally, al-
though the canonical form of a tensegrity structure is composed
of rigid struts and tensile cables, tensegrity structures also exist
in which the struts are elastic and connected by cables or sheets
of material.2

Due to their design, tensegrity structures have been discovered
to have the ability to form the basis of lightweight and strong
mechanical structures using little material. This has gained them
widespread popularity in architectural design for structures such
as bridges and geodesic domes [19]. Their utility has also been
recognized for the design of lightweight space structures such
as deployable masts [17] and reflector antennas [27], [49].

Numerous theoretical investigations of the static properties
of tensegrity structures have been undertaken. In particular, the
problem of form finding, determining the geometrical configura-
tion of a tensegrity structure, has received much attention. Early
structures developed by Fuller and Snelson used convex poly-
hedra as the basis for form-finding. This approach resulted in
various configurations which were summarized by Pugh [35].
More recently, other methods have been developed which in-
clude the use of nonlinear programming [36], dynamic relax-
ation [32], symmetry [7], [8], volume maximization [56], and
calculation of force density [29], [41], [51]. A good review of
these and other form-finding methods can be found in [50].

1This is often used for low-volume stowage and transportation.
2The pop-up tent is a good example of such a tensegrity structure.
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In addition to the static characteristics, the mechanics and mo-
tion control of tensegrity structures have also been investigated
to some extent. De Jager and Skelton have studied the placement
of sensors and actuators on planar tensegrity models [11] and in-
tegrated design of topology and control [12]. Kanchanasaratool
and Williamson have developed a constrained particle dynamic
model, assuming zero mass struts, and used the input–output
mapping of this model to formulate a neural-network-based in-
version for path tracking [24], [25]. Domer et al. have studied
the use of the stochastic search techniques simulated annealing
and probabilistic global search for shape control [13]. Sultan
et al. have investigated nonlinear control for a tensegrity-based
flight simulator [46]. Only a few groups have studied motion
control directly in the context of robotics. Aldrich et al. have
developed methods for trajectory tracking in a tensegrity-based
robotic manipulator [2], and Masic and Skelton have considered
self-propelled tensegrity towers using transversal wave shape
control [55].

To our knowledge, the use of tensegrity in the context of loco-
motor robots has not been previously implemented. This is po-
tentially a considerable oversight as, in some respects, tensegrity
structures closely resemble the structural architecture of biolog-
ical systems with the ability to locomote. It has been shown that
the cytoskeleton of a cell is similar to a tensegrity structure [22],
[23], and numerous single-celled organisms are known to loco-
mote. Furthermore, tensegrity structures are also similar to mus-
culo-skeletal systems of highly successful land-based animals
in their use of tensile elements. Cats, which can jump several
meters in height without causing damage to their structure, and
cheetahs, which can achieve maximum speeds of over 60 mph,
are able to perform these incredible feats due to the intricate
incorporation of tensional elements in their musculo-skeletal
system [52]. Their musculo-skeletal systems are made up of
rigid links (bones) which are connected by tensile elements (ten-
dons) with contractive elements (muscle fibers) in series. The
tensile elements maintain the integrity of the form and store
energy, making it possible to sustain large impact forces and
transfer energy from one bound to the next. Due to this architec-
tural equivalence, it is likely that tensegrity structures can pro-
vide a suitable basis for locomotion.

Although tensegrity robots and other structures that utilize
tension such as cable-suspended robots [1] have been consid-
ered in the past, their dynamics have been treated as an engi-
neering liability. Various attempts have been made to overcome
or eliminate them, using mechanical solutions such as tendons
to stiffen the structure [5] or control solutions to cancel out the
natural dynamics [2], [34]. This study is the first to consider the
dynamics an asset and utilize them. The dynamics allow for the
storage and release of energy which facilitates locomotion.

Tensegrity structures also provide benefits in terms of weight
and strength-to-weight ratio. Recent years have seen a trend to-
wards mobile robot applications in autonomous space explo-
ration, operations in hazardous environments, military opera-
tions, and human assistive functions. As the financial costs of
transportability and the energetic costs of mobility are key is-
sues in these areas, they could greatly benefit from advances in
lightweight design techniques that do not require the sacrifice
of strength or functionality.

In pursuit of these potential benefits, our study addresses the
design of robots using tensegrity and the motion control of these
structures for locomotion. The tensegrity structures described
in this paper do not resemble the morphologies of conventional
legged robots and cannot be easily recognized as biomimetic
bipeds, quadrupeds, or hexapods. Nonetheless, their mode of lo-
comotion can be classified as legged, as it involves a sequence of
discrete foot contact events. This is in contrast to mobile robots
which use wheels for continuous rolling (or sliding) contact.

Tensegrity structures can be made in a variety of ways, and
each variation is likely to be interesting in its own right. How-
ever, as a preliminary step, this paper addresses the subset of
tensegrity structures in which cables are elastic and struts are
rigid, disconnected, and spatially separated. Within the con-
straints of this definition, there are also variations depending on
the number of cables that originate at each vertex. Here, we fo-
cused on structures which have exactly three cables originating
at each vertex.

For the control of the tensegrity robots for locomotion,
precise trajectory tracking was not considered a high priority.
Instead, the primary focus was the production of gait, defined
as the generation of rhythmic motions which lead to nonzero
movement of the center of mass [30]. McIsaac and Ostrowski
developed an analytical approach to determine higher order pat-
terns of control inputs which could lead to periodic motions in
mechanisms with nonholonomic constraints. However, in this
paper, an alternative, computational approach was employed
to converge on periodic patterns of actuation for locomotion,
which did not require assumptions on the constraints. This
method is used for the control of two tensegrity robots, TR-3
and TR-4, which are based on tensegrity prisms of three and
four struts, respectively. The results demonstrate successful
production of static and dynamic gait patterns in both robots
and robustness to actuator failtures. The results show that even
simple tensegrity structures can harbor the potential for dy-
namic gait production and thus suggests the utility of tensegrity
for the design of land-based locomotor robots.

II. DYNAMICS

The dynamics of tensegrity structures have been studied in
previous work. Kanchanasaratool and Williamson [24] have de-
veloped a constrained particle dynamic model assuming zero
mass struts, using the Lagrange method. Skelton et al. [42],
Sultan [45], and Aldrich et al. [2] have developed more com-
plete models including mass and inertial properties. Skelton et
al. have instantiated the struts as point masses located at the end-
points to avoid the use of angular velocites and derived an ex-
pression for strut accelerations in the shell class of tensegrity
structures. Sultan has represented the struts as rigid bodies and
modeled the dynamics in the absence of gravity using the La-
grange method. Aldrich et al. have used a model of a serial link
chain adapted to the geometry of a tensegrity structure and de-
rived the dynamics using the Lagrange method for the control
of a robot manipulator.

For the class of tensegrity structures used in this work, the
Newton–Euler method is suitable for the development of the
equations of motion. Tensegrity structures with elastic cables
do not have rigid joints to generate constraints, and, thus, in
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essence, each strut can be considered a free body with a set
of forces acting on it. Thus, the Newton–Euler method is more
amenable to the analysis of such structures as, in this method,
every rigid body is treated as a free body.

This method can be used to develop the equations of mo-
tion for an actuated tensegrity. In general, if a tensegrity struc-
ture has struts, in three dimensions, each strut has six de-
grees of freedom (DOF). These include three position variables

and three orientation variables for the th
strut, the latter of which specify angles with respect to the -,

-, and -axes, respectively. Thus, the state vector for a system
of -struts is a vector , such that

(1)

Depending on the configuration of the tensegrity structure,
every strut end is connected to three elastic cables that exert
forces on the rigid struts. The set of cable forces is

, where is the number of cables. Note
that there are twice as many cable forces as cables, as each cable
will produce two force vectors in equal and opposite directions,
one on each strut to which it is attached. Each cable force mag-
nitude is calculated as follows:

(2)

where and are the position vectors of the strut ends to
which the cable is attached and is the rest length of the cable
which produces . The force vector produced at the strut
end represented by position vector due to the cable connected
between strut ends and is

(3)

In addition to the cable forces, the rigid struts also expe-
rience occasional contact forces from the ground. Assuming
that, during normal behavior, only one end of a strut con-
tacts the ground at any time, the set of ground forces is

. These forces are nonzero only
upon contact and can be calculated according to a standard
spring-damper-based ground model [48].

Thus, the Newton–Euler Equations for the tensegrity struc-
ture can be written in the following generalized form:

(4)

where is the inertia matrix.
This parametric formalization can be used to represent not

only tensegrity robots but also biological musculo-skeletal sys-
tems and standard robotic structures. Thus, it yields a general
framework that can be used to compare the performance of var-
ious natural and artificial morphologies.

III. IMPLEMENTATION

The tensegrity structures were implemented in the open dy-
namics engine (ODE) simulation environment, which provides

Fig. 1. (a) Schematic of the three-prism tensegrity structure. The thick black
lines indicate the struts. The thin gray lines indicate the cables at the two ends
of the prism. These are of length S . The thin black lines indicate the transverse
cables connecting the two sides of the prism. These are of length S . (b) The
robot TR-3, based on the three-prism tensegrity structure, in simulation.

physics-based simulation of rigid body motion. It includes im-
plementation of the frictional characteristics of ground surfaces,
gravity, and the dynamics of multilink rigid bodies composed of
various types of joints.

The struts of the tensegrity structures were implemented as
rigid cylindrical bodies. The outer surfaces of the struts had
elastic contact properties such that, when in contact with an-
other surface, they generated forces which resisted penetration.
The cables, in contrast, were implemented as virtual objects
which were massless and volumeless and did not have any con-
tact characteristics. Each cable was represented by a collinear
pair of forces, one of which is applied at the end of each strut to
which the cable is attached. The magnitude of the force was
based on a spring-damper model

(5)

where is the current distance between the relevant strut end-
points, is the spring rest length, is the spring coefficient,
and is the damping coefficient. The forces were applied along
the instantaneous location of the line joining the end points of
the two struts to which the cable was attached. If the endpoints
were further than the rest length of the cable, the forces would
be positive, but, if they were closer, the forces would be zero,
indicating a loss of cable tension. This was allowed to occur as
it was a natural result of the dynamics being strongly excited
during dynamic locomotion.

Figs. 1 and 2 show the morphology of the TR-3 and TR-4
robots, and Tables I and II show the values of the parameters
used in the implementation of these robots, respectively.

A. Actuation

Three methods of actuation are possible in a tensegrity struc-
ture: strut-collocated, cable-collocated, and noncollocated actu-
ation. In strut-collocated actuation, the actuators are responsible
for altering the strut lengths. In cable-collocated actuation, the
structure is modified by changing the effective rest length of the
cables. In noncollocated actuation, actuation is applied between
two struts, two cables, or a strut and a cable.
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Fig. 2. (a) Schematic of the four-prism tensegrity structure. The thick black
lines indicate the struts. The thin gray lines indicate the cables at the two ends
of the prism. These are of length S . The thin black lines indicate the transverse
cables connecting the two sides of the prism. These are of length S . (b) The
robot TR-4, based on the four-prism tensegrity structure, in simulation.

TABLE I
VALUES OF PARAMETERS FOR THE TR-3 ROBOT

TABLE II
VALUES OF PARAMETERS FOR THE TR-4 ROBOT

Cable-collocated actuation was selected for both the TR-3
and TR-4 robots. This is similar to prior work on motion con-
trol of a tensegrity structure for a flight simulator in which the
control variables were the rest lengths of the cables [46]. On
the TR-3 and TR-4 robots, the cables were located on the lon-
gitudinal cables of the prisms as indicated in Figs. 1 and 2 by
the black cables ( in TR-3 and in TR-4). The
actuators applied force on the structure by effecting a change
in the rest length of these cables. For the TR-3, the maximum
change in the cable length was 0.10 m and, for the TR-4 robot,
the maximum change was 0.06 m. The control of the robot was
accomplished by periodically changing the rest lengths of these
cables between the maximum and minimum values. In simula-
tion, this change was considered to be instantaneous.

IV. CONTROLLER DESIGN USING A GENETIC ALGORITHM

Each actuator was contracted once during each gait cycle.
The controller determined the phase of the gait cycle at which
each actuator was activated, the duration of contraction, and the
amplitude of contraction independently for each actuator. It also
determined the overall period of the gait.

Thus, the relevant parameters in the control were:
period of the gait cycle;

amplitude of actuation for each cable;

phase of onset of actuation for each cable;

duration of actuation for each cable;

current rest length of each cable;

original rest length of each cable;

time of onset in each cycle;

time.

The controller had the following algorithmic form.
In each time step, for each cable

According to this, actuation of a cable was initiated when
was at the phase of onset specified by the parameter . At

this point, the parameter was initialized to the value of .
Subsequently, the cable was activated for time steps and then
deactivated for the rest of the gait cyle.

A genetic algorithm [31] was used to optimize the controller
for locomotion by performing a computational search through
the parameter space defined by , , , and . Each agent in
the population had a genome string with floating point values
between 0 and 1. The first value in the string encoded the pe-
riod of the gait cycle. The rest of the genome string was com-
posed of triples encoding the amplitude, phase, and
duration for each cable. The parameters , , , and were
determined from these values as follows:

where , , and .
A fixed-length genetic algorithm was used to evolve the

controllers. Each run of the genetic algorithm was conducted
for 200 generations, using a population size of 200. At the
end of each generation, the 100 most fit genomes were pre-
served; the others were deleted. Tournament selection with
a tournament size of three was employed to probabilistically
select genotypes from among those remaining for mutation and
crossover. Twenty-five pairwise one-point crossings produced
50 new genotypes: the remaining 50 new genotypes were
mutated copies of genotypes from the previous generation. The
mutation rate was set to generate an average of mutations for
each new genome created, where was defined as a function
of the genome length , as . Mutation involved the
replacement of a single value with a new random value. The
floating-point values were rounded to two decimal places and
thus ranged between 0.00 and 1.00. For the TR-3 robot, the
genome had 10 values and, for the TR-4 robot, 13 values. The
first value represented the period of the gait cycle, and the rest
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Fig. 3. Results: best fitness achieved in each of the ten evolutionary experi-
ments with the TR-3 robot.

of the genome consisted of triples representing phase, duration,
and amplitude of actuation for the three actuated cables.

During evolution, each individual was evaluated for 10 000
time steps of the dynamics simulation, where each time step cor-
responded to 0.001 s. The initial condition for each individual
at the first time step was at position [0, 0] in the – plane. The
fitness of the individual was determined at the end of the eval-
uation period, and was considered to be the distance traveled in
the -direction with respect to the origin.

V. RESULTS

A. TR-3

Ten evolutionary optimizations were performed to obtain
controllers for the TR-3 robot in simulation. The best fitness
achieved in each of these runs is shown in Fig. 3. In most of the
experiments, controllers were evolved, which led to nonzero
movement of the center of mass in each cycle, although some
were more effective than others. The fitness was a measure of
the distance traveled in he forward direction in 10 s. The final
fitnesses in the experiments ranged between 1.6–4.6 m and the
average fitness was 2.95 0.91 m.

The gaits achieved in the various runs varied in their pattern of
actuation and, as a result, in their movement pattern. Some gaits
were slow and static, similar to an inchworm gait. Experiment
4 yielded such a gait pattern. The pattern of actuation employed
in this gait can be seen in the graphs of cables forces of the
actuated cables in Fig. 4. An instantaneous increase in cable
force corresponded to activation of the actuator, which lead to
contraction of the cable. Conversely, an instantaneous decrease
in cable force corresponded with deactivation of the actuator.
Referring back to Fig. 1, cables and are the actuated cables
close to the ground, and cable is the one on top. Thus, as
the force graphs in Fig. 4 show, the gait is produced roughly by
activating the bottom two cables and for equal durations
one after the other, while keeping the top actuator active, and
then relaxing all three actuators. If the actuators are labeled from
front to back in Fig. 1, is actuator 1, is actuator 2, and

is actuator 3. The pattern of actuation can then be written
as a sequence of binary states , where is a binary
value corresponding to the state of actuator . 0 corresponds to
the actuator being relaxed, and 1 corresponds to the actuator
being activated (contracted). Thus, the pattern of actuation in
this gait can be seen a repeated loop through the states [0,1,1],

Fig. 4. TR-3, Experiment 4. Top: cable forces plotted as a function of time for
1000 ms, from top to bottom for the actuated cables c –c (Fig. 1), respectively.
Middle: ground contact information plotted for struts S , S and S for 1000
ms. Dark portions of the lines indicate that a strut is in contact with the ground,
and white portions indicate absence of ground contact. Bottom: dot product of
the strut velocities with the velocity of the center of mass. These graphs indicate
the contribution of the struts to the forward movement of the body.

[1,1,0], [1,0,0], [0,0,0]. The cable forces have been plotted for
1000 ms (Fig. 4) and in this duration of time, approximately
three loops through this sequence of states is performed. Thus,
the frequency of the gait cycle is approximately 3 Hz.

The middle set of graphs in Fig. 4 show the corresponding
foot contact data. It can be seen that the actuation pattern gives
rise to a slow, relatively static gait in which all three contact
points are on the ground for large parts of the gait cycle. The
gait can be understood as the robot dragging two of its struts
along, using the third as a pick axe. The contact data shows that
the gait pattern is not perfectly periodic, unlike the pattern of
control inputs. However, a rough periodicity can be observed if
the data is plotted for 10 s.

The lower set of graphs in Fig. 4 plot the dot product of the ve-
locity vector of each strut, with the velocity vector of the center
of the mass of the robot. These graphs indicate the contribution
of each strut to the forward movement of the body. The graphs
show that the three struts alternately contribute to forward move-
ment. S3 and S2 make larger contributions when they are not in
contact with the ground, whereas S1 contributes while being in
contact with ground.
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Fig. 5. TR-3, Experiment 4: the trajectory of the center of mass of the TR-3
robot plotted for 10 s of operation time.

Fig. 6. TR-3, Experiment 9: Top: cable forces as function of time for 1000 ms,
plotted from top to bottom for the actuated cables c –c (Fig. 1), respectively.
(Middle) ground contact information plotted for struts S , S and S for 1000
ms. Dark portions of the lines indicate that a strut is in contact with the ground,
and white portions indicate absence of ground contact. Bottom: configuration
of the robot in three different phases of the gait cycle.

The position of the center of mass of the robot over 10 s is
plotted in Fig. 5. The trajectory is curved in the initial transient
phase, but then tracks a straight line. The slight aperiodic nature
of the gait is apparent on close observation, in that not every step
produces exactly the same change in the position of the center
of mass. However, it is nonetheless effective in transporting the
robot at an approximate forward speed of 0.26 m/s.

In contrast, the outcome of Experiment 9 was very different.
The middle set of graphs in Fig. 6 which show the pattern of foot
contact data for 1000 ms indicate that the gait was much more

dynamic and included flight phases in which all three contact
points left the ground during certain phases of the gait cycle.
The movement could be characterized as a bounding gait and
was also more periodic than the previous example.

The actuation pattern that led to this gait can be observed
in the graph of cables forces in Fig. 6. At the outset, it can be
seen that cables and have a greater duty cycle in this gait,
leading to greater energy input into the system. Also, a driving
factor in this gait is the top cable , which has a large change
in length and force amplitude (Fig. 6). Following the controller
through the sequence of binary states, the actuation pattern can
be roughly characterized as [1 1 1] [0 1 1] [1 1 1] [1 0 0] [1 0 1].
In the 1000 ms plotted, slightly over four cycles of activation
are observed. Thus, the frequency of the gait is approximately
4 Hz.

To understand the production of gait in more detail, the
changes in configuration of the robot during one gait cycle are
shown at the bottom of Fig. 6. The robot moves by alternating
between the extreme configurations A and C, which mainly
vary in the degree of contraction of the top cable . This alter-
nation leads to forward motion as can be seen in the sequence
of still frames extracted from a video of the simulated robot
moving in Fig. 7.

The position of the center of mass of the robot as a result of
this gait is shown in Fig. 8. The trajectory has a slight eccen-
tricity and does not perfectly track a straight line. However, the
gait is fast, achieving a speed of 0.45 m/s.

B. TR-4

Ten evolutionary optimizations were also performed to obtain
controllers for the TR-4 robot in simulation. In contrast to the
TR-3 robot, which was optimized for locomotion lying on its
side, the TR-4 was optimized for locomotion standing on one
end. The best fitness achieved in each of these runs is shown in
Fig. 9. As can be seen, all the experiments successfully evolved
locomotion. The fitnesses from the TR-4 robot were higher on
average than those with the TR-3 robot and were in a range
between 2.20–3.97 m. The average fitness was 3.18 0.50 m.

Experiment 1 produced a relatively fast gait with a fitness of
3.97. The pattern of actuation producing this gait can be seen
in the graphs of cable forces of the actuated cables in Fig. 10.
Here, the first cable is activated for more than 90% of the
gait cycle. The cables and alternate in their activation,
such that is active for 40% of the gait cycle and for the
remaining 60%. Cable is activated at the same time as
and then deactivated shortly thereafter. The pattern of actuation
can be characterized as a loop through the sequence of binary
states [1 0 1 0] [1 1 0 0] [1 1 0 1] [1 0 1 0 ] [0 0 1 0]. This
leads to a staggered pattern of foot contacts in which the struts
make ground contact sequentially in the order , , , and

. However, their ground contact phases overlap in time, and
there are only brief durations in which all four struts are off the
ground. It is interesting that this gait pattern is mostly static,
as fast motion is usually associated with dynamic gait. In the
1000 ms plotted, six and a half periods of the gait cycle are
produced, thus the frequency of the gait is approximately 6.5 Hz.
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Fig. 7. Still frames extracted from video of the TR-3 robot locomoting in Experiment 4. The robot moves by alternating between configurations A and C, which
are depicted in Fig. 6.

Fig. 8. TR-3, Experiment 9: the trajectory of the center of mass of the TR-3
robot, plotted for 10 s of operation time.

Fig. 9. Results: best fitnesses achieved in each of the ten evolutionary experi-
ments with the TR-4 robot in simulation.

This is fast, compared with the other gaits presented, and may
be a factor in the high performance of this gait.

The trajectory of the position of the center of mass of the robot
is shown in Fig. 11. The trajectory has a distinct counterclock-
wise curvature. As the agents were rewarded for maximum dis-
tance traveled in the -direction and not directly penalized for
veering off a straight line course, some of the agents generated
curved trajectories.

Experiment 5 achieved a slow but dynamic gait with a fitness
of 2.20. The evolved pattern of actuation can be seen in the graph
of cable forces in Fig. 12. Cables and , which are the
two cables approximately facing the direction of motion, are
both contracted at the same time. Notice that, for the example

Fig. 10. TR-4, Experiment 1. Top: cable forces as a function of time for 1000
ms, plotted from top to bottom for the actuated cables c –c (Fig. 2), respec-
tively. Bottom: ground contact information plotted for struts S , S , S and S
for 1000 ms. Dark portions of the lines indicate that a strut is in contact with the
ground, and white portions indicate absence of ground contact.

Fig. 11. TR-4, Experiment 1: the trajectory of the center of mass of the TR-4
robot is plotted for 10 s of operation time.
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Fig. 12. TR-4, Experiment 5. Top: cable forces as function of time for 1000
ms, plotted from top to bottom for cables c –c (Fig. 2), respectively. Middle:
ground contact information plotted for struts S , S and S for 1000 ms. Dark
portions of the lines indicate that a strut is in contact with the ground, and white
portions indicate loss of ground contact. This gait is dynamic as it includes flight
phases in which all four struts are off the ground at the same time. Bottom:
configuration of the robot shown in three different phases of a gait cycle.

around time step 200, both cable forces show an increase, which
is maintained for roughly the same duration of time 100 ms.
Looking at the graph of foot contact, it can be seen that this time
also corresponds to the time when the struts and come off
the ground, followed shortly by strut . Thus, the contraction
of these two cables, while is activated, causes the small hop.
Labeling the cables – as 1–4, respectively, the actuation
pattern can be written as a loop through a sequence of binary
states , which for this gait is [0 1 0 0] [1 1 0 1 ]
[1 1 1 1 ] [0 0 0 0].

The foot contact data in Fig. 12 are similar to Fig. 6 in that
there are portions of the gait cycle in which all four struts are off
the ground simultaneously. Thus, the gait here is also dynamic
and similar to bounding. The gait is not perfectly periodic, al-
though over a larger time scale an approximate periodicity can
be observed. In the 1000 ms for which the forces and contact
data are plotted, a little over four cycles are observed. Thus, the
frequency of the gait cycle is roughly 4 Hz.

To provide further insight into the production of this dynamic
gait in the TR-4, the configuration of the robot is shown at the
bottom of Fig. 12 during three distinct phases of the gait cycle.
Configuration A, which roughly corresponds to the take-off

phase, has cables and activated. Configuration B, which
corresponds to the flight phase, has all four actuators activated.
Configuration C, which corresponds approximately to stance
phase, has only cable activated. The movement of the
robot using these changes in configuration can be seen in the
sequence of still frames extracted from a video of the robot
moving in Fig. 13.

The trajectory of the position of the center of mass of the robot
is plotted in Fig. 14. The trajectory is more irregular than those
produced by the TR-3 robot. One reason for this may be that
the dynamics are more nonlinear as the system is more complex
with a larger number of mass and spring elements.

VI. FAULT TOLERANCE

As observed in Experiment 1 with the TR-4, the robot was
able to produce gait without using one of its actuators. This
indicated that the robot could demonstrate a certain degree
of fault tolerance with respect to actuator damage. In order
to further invesigate fault-tolerant gait production, the TR-4
robot was tested with 1 and then two actuators damaged. Each
condition was evaluated in ten experiments, where controllers
were re-evolved for the remaining actuators. With one actuator
damaged, the robot was still able to move and achieve fitnesses
between 1.99–3.58 m with an average fitness of 2.72 0.44 m.
With two actuators damaged, the robot was also able to move,
although at a slower pace, with fitnesses ranging between
1.21–2.82 m, and an average fitness of 1.98 0.62 m.

Fig. 15(a) shows the cable force and ground contact data for a
successful gait evolved in the single actuator damage condition.
The fitness achieved in this experiment was 1.99 m in 10 s. One
difference between this graph and the graph of cable forces in
Fig. 12 is that the amplitudes of the forces are much higher. The
graph suggests that the continued ability to produce gait relies
on higher activation of the remaining cables to compensate for
the lack of energy input from the inactive cable.

The ground contact data in Fig. 15(a) show a degree of period-
icity almost as high as that observed in Figs. 6 and 12, which is
significant considering that the robot is damaged. This suggests
that the ability to produce a periodic gait is not significantly di-
minished due to this damage condition. The gait is also dynamic,
similar to the gaits in Figs. 6 and 12. In fact, the flight phases of
this gait last more than 50% of the gait cycle. This suggests that
the ability to produce dynamic gait is also not significantly af-
fected by the damage condition. The frequency of the gait is ap-
proximately 5 Hz, which is faster than that observed in Fig. 12.
Thus, it seems that, in this case, using stronger cable contraction
along with faster cycle times allows the robot to compensate for
the lack of the fourth actuator.

Fig. 15(b) shows the graphs of cable forces and ground con-
tact data for a successful gait evolved in the double-actuator
damage condition. The fitness achieved in this experiment was
1.76 m in 10 s. Again, it can be seen that the amplitudes of the
forces are higher than those in Fig. 12. However, the actuator

is only activated for a very short time during the gait cycle.
Thus, the energy input into the system is significantly lower than
the previous case.

The ground contact data in Fig. 15(b) show that the quality
of the gait is more significantly affected by two actuators being
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Fig. 13. Still frames extracted from video of the TR-4 robot locomoting in Experiment 5. The robot moves by alternating between flight phases while in configu-
ration B and ground contact phases while in configuration C, both of which are depicted in Fig. 12.

Fig. 14. TR-4, Experiment 5: the trajectory of the center of mass of the TR-4
robot is plotted for 10 s of operation time.

damaged. There is no apparent periodicity, and the gait pattern
is irregular. The gait is also much more static, and there are no
flight phases in which all four struts are off the ground at the
same time. Nonetheless, as the fitness is 1.76 m, it would seem
that the gait is exploiting another strategy, using low frequency
cable contraction and moderate energy input to achieve some
form of static gait.

Fig. 16(a) shows the trajectories of the center of mass of the
robot in each of the ten experimental trials with one actuator
damaged. On average, the trajectories seem to have a coun-
terclockwise bias as in Figs. 11 and 14, but are more strongly
curved. However, with appropriate feedback control, it may be
possible to achieve straight line motion even with one actuator
damaged. Interestingly, the more static gaits of Fig. 16(b) are
less curved, although they are also shorter on average. Once
again, it seems likely that, with control, it could be possible to
harness the ability for locomotion for straight line motion.

As a final comparison, the fitnesses achieved in these exper-
iments are plotted against the fitnesses of the experiments in
which all four actuators are working, in Fig. 17(a). With one
actuator damaged, the robot is able to produce gaits with an av-
erage speed of 0.27 m/s. With two actuators damaged, the robot
is still able to produce gaits with an average speed of 0.20 m/s.
The main consequence of actuator damage is a reduction in
speed and not an inability to produce gait. One of the main rea-
sons for the decline in speed is the reduction in energy input

into the system. With one actuator damaged, there is a 1/4th re-
duction in energy and, with two, it is 1/2. Normalizing the fit-
ness by the number of actuators, as in Fig. 17(b), shows that
the performance per actuator actually increases in the damage
conditions, indicating that the decline in performance due to ac-
tuator damage represents a graceful degradation rather than a
catastrophic failure.

VII. PHYSICAL ROBOT

To test the feasibility of a tensegrity robot in the real world, a
physical robot was built inspired by the TR-3 robot simulation
(Fig. 18). Aluminum tubes were used for the struts, and nylon
covered rubber elastic cable was used for the cables. The struts
were 0.4 m long and the cables lengths and were 0.14 and
0.21 m at rest and 0.15 and 0.33 m in the equilibrium config-
uration. This lead to a structure with overall length, width, and
height of 0.36, 0.21, and 0.23 m, respectively. The overall weight
of the structure was 680 g. The physical parameters of the phys-
ical robot were slightly different from those of the simulation:
the struts were slightly heavier, the cables had slightly higher
elasticity, and the floor had higher friction, due to our particular
choice of materials and test environment. However, it was not
considered particularly important to create an exact correspon-
dence between the simulation and the real robot, but to develop a
platform that would validate the feasibility of a tensegrity robot.

The pure linear actuation of the transverse cables in the simu-
lation were approximated using Hitec HS-625MG servomotors
mounted on the struts. The servomotor axle was fitted with a
2.54-cm plastic arm to which the cable was attached using a nut,
bolt, washer fitting, and heavy duty fishing line. The motor had
a range of motion of 45 . During walking, each servomotor was
controlled to alternate between its maximum and minimum po-
sitions, producing an approximately 2-cm change in the length
of the cable. The actuators were labeled as [1, 2, 3], where 1
corresponded to the servomotor towards the front of the image,
2 corresponded to the one in the middle at the top, and 3 cor-
responded to the one behind and on the bottom. When each ac-
tuator was at its minimum position so that the cable was at rest
length, it was considered to be in state 0. When it was at its max-
imum position, exerting force on the cable, it was considered to
be in state 1. A periodic pattern of actuation was used which cor-
responded to looping through the states in the following order
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Fig. 15. Cable force and ground contact data of successful gaits produced with actuator damage, plotted for 1000 ms. (The arrows indicate the damaged actuators.)
(a) One damaged actuator. (b) Two damaged actuators.

Fig. 16. (a) Trajectories of the position of the CoM of the robot, for the ten experimental trials with one actuator damaged, plotted for 10 s. (b) Trajectories of the
position of the CoM of the robot, for the ten experimental trials with two actuators damaged, plotted for 10 s.

[1, 0, 0], [1, 0, 1], [1, 1, 0] [1, 1, 1], [0, 0, 0] [0, 0, 1], [0, 1, 0], [0,
1, 1]. Using this controller, the robot was able to produce gait
in the longitudinal direction at a speed of 60 cm/min as seen in
Fig. 19.

VIII. DISCUSSION

A. Results

The use of evolutionary optimization to find periodic open-
loop controllers for tensegrity robots in simulation yielded pos-
itive results. In all the experiments, controllers were designed

which led to nonzero movement of the center of mass over time
(see Figs. 3 and 9). This suggests that the tensegrity structures
implemented, with the particular physical parameters used,
were highly capable of movement. This result is not entirely
unexpected. As discussed in Section I, the elastic tendinous
network which maintains the form of a tensegrity structure has a
high potential for energy storage and release. The optimization
algorithm could thus simply design a sequence of actuation
patterns such that this energy would be released to produce
motion in the desired direction. Nonetheless, the simulation
results experimentally validate the hypothesis that tensegrity
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Fig. 17. Graceful degradation of locomotor performance in response to actuator failure. (a) Performance of the TR-4 robot with four, three, and two actuators
active. The small dots represent the best fitness achieved in each experiment, and the large dot represents the average over all the runs in each condition. (b)
Performance of the robot with four, three, and two actuators active normalized by the number of active actuators. The small dots represent the normalized fitness,
and the large dot represents the normalized average over all of the runs.

Fig. 18. Robot resembling TR-3 implemented in the real world.

structures are suitable for movement. The implementation of
the real world robot provides physical evidence.

However, although all of the controllers produce motion ap-
proximately in the desired direction, not all the trajectories track
a straight line. There are two possible reasons why this is the
case. The first is that the evolutionary search for controllers does
not directly reward for straight line motion. If an agent has a
gait which is fast but slightly asymmetric, it may still achieve a
better fitness than an agent with a slow straight gait, and thus,
several of the agents opt for this strategy. The second reason
why straight-line gaits are not commonly observed may be the
bilateral asymmetry of the structures. Although the three- and
four-strut tensegrity prisms were simple structures to start with,
they may not have beeen the best structures possible for locomo-
tion due to their inherent bilateral asymmetry. Tensegrity prisms
are skewed by nature. The angle at which the top polygon is
skewed from the bottom polygon depends on the number of
struts in the structure [26]. This skew suggests that a pure peri-
odic oscillation in the cables should lead to movement which
is biased to one direction. Only with feedback-based correc-
tion would it be possible for such a structure to achieve perfect

straight line motion. Nonetheless, the fact that some of the tra-
jectories are not too far from straight-line motion suggests that
it would be possible to achieve with appropriate feedback-based
control.

Another characteristic of the gaits found in the results were
that they were not perfectly periodic, although the pattern of ac-
tuation applied in all cases was periodic. This effect is quite pro-
nounced, for example, in the pattern of foot contacts in Fig. 4.
Although approximately three periodic cycles of actuation are
applied to the cables, there is less corresponding periodicity in
the pattern of foot contacts. In the other gaits as well, although
the periodicity is more apparent, it is not perfect. The reason
for this is that the dynamics of the tensegrity structure, in inter-
mittant contact with the ground, are defined by a second-order
nonlinear hybrid system, and, in such systems, it is not always
the case that periodic inputs produce periodic behavior. Further-
more, the genetic algorithm used here did not directly reward
for periodicity in the fitness function, and thus the controllers
were not required to satisfy this criterion. One way to improve
the periodicity of the gait would thus be to explicitly reward
for this in the fitness function. However, a more substantial im-
provement in periodicity would most likely be obtained using
a controller architecture based on coupled oscillators. Such a
controller would enable phase locking between the control in-
puts and the mechanical structure leading to a more stable limit
cycle in the gait pattern [43], [48].

The simulation of both robots used relatively light struts and
cables with low spring constants. This was shown to produce
successful gaits. These physical parameters were selected partly
due to the use of ODE’s physics-based simulation, which posed
some computational constraints. Large masses and forces could
not be used, as with moderate calculation time steps of 0.001 s,
positive feedback in the calculation of forces lead to instability
in the system. For this reason, the masses of the struts as well
as the spring constant of the cables had to be low. For higher
masses or spring constants, the calculation time step had to be
changed from 0.001 to 0.0001, which was ten times slower. For
this reason, the masses and spring constants used were restricted
to a range that would enable simulation at 0.001-s time steps and
were lower than what would be expected in reality.
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Fig. 19. Still frames extracted from video of robot walking. The robot walks by alternating forward movement in the two bottom struts. Arrows have been added
to indicate the original location of the strut ends. The arrow is colored light to indicate which strut has just been moved.

How well the simulation results transfer to the real world is
an important question. If the parameters of the simulation could
be implemented exactly, then the behaviors observed in simu-
lation would transfer to the robot in the real world. However,
as the simulation experiments were performed before the con-
struction of the real robot, physical properties of materials were
not specifically considered in its design. Thus, the robot differed
from simulation due to real-world factors such as actuator size,
actuator placement, and available material properties for cables.
Thus, it is not likely that the gaits observed in simulation would
have identical counterparts in the real robot. Nonetheless, de-
spite these differences, the gait presented in Section VIII is qual-
itatively similar to the slow gait evolved in simulation Experi-
ment 4 with the TR-3 robot. A more accurate simulation could
be achieved, of course, once a real robot exists. However, the
challenge is to find realistic models for the physical parameters
of the robot. This can be difficult for parameters such as spring
and damping constants as spring constants of real materials are
often nonlinear and include hysteresis, and damping constants
are difficult to measure. Nonetheless, it would be possible to de-
velop appropriate approximations which could be used simulate
the robot.

B. Advantages and Disadvantages

In traditional robot design, the goal of control is to ensure
that each joint is precisely controlled and tracks a desired joint
trajectory, although the physical structure of a robot usually in-
cludes dynamic interactions between the motions of multiple
joints. Thus, the control often seeks to decouple dynamic inter-
actions between the individual joints. While such designs often
lead to successful control strategies, from the perspective of the

mechanical structure, they are often not fault-tolerant. Thus, for
example, in a quadruped robot, a broken knee joint may drasti-
cally impair the ability to produce gait. In a tensegrity robot,
actuation at one location of the structure produces motion at
multiple locations. The dynamics are even more coupled than
in a traditional robot. This feature gives the structure a high de-
gree of fault tolerance. If an actuator is damaged, another may
be used to make up for its function. The utility of this feature
was demonstrated in Section VII.

The fact that application of a force on one part of the struc-
ture causes a global deformation in the structure also presents
other benefits. One actuator can be used to actuate multiple
cables, which leads to the possibility for a small number of
actuators to cause a global movement pattern and for multiple
subsets of actuators to be used to produce the same behavioral
outcome.

Tensegrity robots also have other advantages. They can be
lightweight, due to the fact that the structure achieves its rigidity
based on a high number of tensile elements and a relatively small
number of rigid elements. Moreover, as only a small number of
actuators are used relative to the number of degrees of freedom,
this can lead to additional reduction in weight. Tensegrity robots
also have a high strength-to-weight ratio and are effective at
absorbing shocks.

In addition, tensegrity robots have the possibility for
low-volume stowage, self-deployability, and reconfigurability.
These are new features in the realm of robotics, which have not
been easily achievable using conventional technology. While
the utility of these features may be limited to certain application
domains, they nonetheless broaden the range of possibilities
for robots.
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IX. CONCLUSION

This paper introduced the concept of using tensegrity struc-
tures as the basis for land based locomotor robots. Two tenseg-
rity robots, based on three- and four-strut tensegrity prisms,
were designed in simulation. Using evolutionary optimization to
obtain periodic gait controllers for these robots, it was demon-
strated that such robots had the potential to generate various
gait patterns. It was also demonstrated that the ability to pro-
duce gait in such structures was not drastically impaired by ac-
tuator damage, but showed a graceful degradation in locomotor
ability. A physical robot was designed based on the three-prism
tensegrity structure. This robot demonstrated the ability to pro-
duce forward locomotion, providing a real-world validation of
the results from simulation. The results suggest that tensegrity
structures can be used to form the basis of efficient, fault-tol-
erant, and physically robust robots for locomotion.
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