
  

 

Abstract— Electrocorticogram (ECoG) recordings are very 

attractive for Brain Machine Interface (BMI) applications due 

to their balance between good signal to noise ratio and minimal 

invasiveness. The design of ECoG signal decoders is an open 

research area to date which requires a better understanding of 

the nature of these signals and how information is encoded in 

them. In this study, a linear and a non-linear method, Linear 

Regression Model (LRM) and Artificial Neural Network (ANN) 

respectively, were used to decode finger movements from 

energy in band-specific ECoG signals. It is shown that the ANN 

only slightly outperformed the LRM, which suggests that finger 

movements are mainly represented by a linear transformation 

of energy in band-specific ECoG signals.  In addition, 

comparing our results to similar Electroencephalogram (EEG) 

studies illustrated that the spatio-temporal summation of 

multiple neural signals is itself linearly correlated with 

movement, and is not an artifact introduced by the scalp or 

cranium.  Furthermore, a new algorithm was employed to 

reduce the number of spectral features of the input signals 

required for either of the decoding methods. 

I. INTRODUCTION 

The use of biological signals has a broad spectrum 

including online patient monitoring, drug delivery control 

[1], reduction of limitations for disabled patients [2], [3], 

medical monitoring and decision making [4], [5], or even 

providing entertainment [6]. Cerebral activity produces 

biological signals which can provide enough information to 

interact with the surrounding, even in the absence of 

peripheral nerves and muscles [6]. The hardware and 

software enabling this interaction is called brain machine 

interface (BMI), also referred to as brain computer interface 

(BCI) [6]. BMI is considered to have the potential for 

restoring locomotor ability in patients with movement 

disorders as a result of brain injury or deterioration. The 

main purpose of medical BMIs is to decode or replicate the 

neural signals responsible for proper functioning of the 

damaged or paralyzed body parts [7]. One of the most 

important tasks in upper limb prosthetics is finger control 

and having a better understanding of how the nervous 

system controls finger movements can help in selecting best 

strategy to control prosthetics and increase their performance 

[8], [9]. 
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Currently used methods for recording the electrical 

activity of the brain include the electroencephalogram 

(EEG), Magnetoencephalography (MEG), 

electrocorticogram (ECoG), local field potential (LFP), and 

single-unit activity/multi-unit activity (SUA/MUA) [3], [6], 

[10]–[12]. In ECoG recordings, since the electrodes are 

placed under the scalp, spatial resolution and signal to noise 

ratio are higher than MEG or EEG recordings. Also, unlike 

MEG, ECoG does not need bulky hardware, and thus is 

more portable and better suited for long term use. Moreover, 

compared to intra-cortical recordings like LFP, SUA/MUA, 

ECoG is less invasive [13], [14]. 

Here, we have used two of the most common ECoG (and 

EEG) decoding algorithms, Linear Regression Model (LRM) 

[13] and Artificial Neural Network (ANN) [11], for 

detection and estimation of finger movements from the 

ECoG signals in human subjects. LRM assumes there are 

linear relationships between the input and output sets and 

provides the coefficients for the linear equations which map 

inputs to outputs. ANN, on the other hand, is a machine 

learning technique which is not limited to linear 

relationships and can model non-linearity and map inputs to 

the output space. Although the brain does not work in a 

linear fashion, high dimensionality and noise in cerebral 

recordings can make it very challenging for the non-linear 

systems to decode these signals [15]. 

The goal of this paper is not only finding the best approach 
to decode ECoG signals, but also providing information on 
the nature of the finger movements represented at the ECoG 
level. The latter will also greatly contribute to the design of 
more efficient BMI devices which are controlled by ECoG 
signals. In addition, by comparing and contrasting these 
findings with similar findings from EEG studies [15], we can 
determine a better understanding about the effects of the skull 
on the cerebral signals. We have also introduced a simple 
method to selectively reduce the number of input features in 
order to decrease the computational cost of the decoding. 
Finally, we have designed a finger movement detector to be 
able to compare results in both estimation (continuous finger 
movement estimation) and decision making (deciding if the 
finger is moving or not) paradigms. 

II. METHODS 

A. Sub-band Decomposition 

Different brain activities can increase the activity level of 
the ECoG signals in different frequency bands unequally 
[13]. Therefore, an FIR filter bank was used to decompose 
the recorded signals into three different sets of band-specific 
ECoG signals. These bands include slow potential sub band 
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(1-60 Hz), gamma band (60-100 Hz), and fast gamma band 
(100-200 Hz). The schematic representation of this filter 
bank and its connection to the other parts of the system is 
shown on Fig. 1. Also, the frequency responses of the filters 
are illustrated on Fig. 2. A short sample of the ECoG signal 
and its sub-band decomposition as functions of time are 
shown on Fig. 3. In addition, the corresponding thumb 
movements for the same signals are illustrated on Fig. 4. 

B. Feature Extraction 

Similar to [13], inspired by the spike rate coding approach 

[16], a band specific amplitude modulation was used as a 

descriptor for ECoG signal decoding. This amplitude 

modulation is defined as the sum of the square voltage 

values of the band-specific ECoG signals v in a time 

window ∆𝑡(𝑡𝑛+1 − 𝑡𝑛). The amplitude 𝑥, for each time point 

𝑡𝑛 is defined as follows: 

 𝑥(𝑡𝑛) = ∑ 𝑣2(𝑡𝑛 + 𝑡)∆𝑡
𝑡=0  (1) 

∆𝑡  was set to 40 ms so that the resulting band specific 
AM features have the same sampling rate as that of the data-
glove position measurements. The 400,000 samples were 
thus reduced to 10,000 after applying the amplitude 
modulation mentioned above. Please note that each 𝑥(𝑡𝑛) 
represents energy of the signal in the corresponding time bin. 
A sample representation of these features is shown on the 
Fig. 5.  

C. Memory Features 

As discussed earlier, there are three band specific ECoG 

signals recorded from each electrode (total of 62 electrodes) 

including slow potential sub band, gamma band and fast 

gamma band (total of 3 bands). It is known that finger 

movement depends on the present state of brain activity as 

well as previous states. In this specific experiment, based on 

previous work [13], the last 25 states used as the decoder 

input resulted in a total of 4650 (62×3×25) features for 

each instant in time. 

D. Decoder models 

As discussed earlier, in this paper, we have used two of the 

most common decoders in the field. LDR, as the linear 

decoder, and ANN as the non-linear decoder. The details of 

each method are described in this section. 

1) Linear Regression Model 

To model the relation between brain activity and hand 

movements, we used a linear regression model. Equations 

describing this model are as follows [13]: 

 𝑑(𝑡𝑛) = 𝑊𝑇�⃑�(𝑡𝑛) (2) 

where 𝑑 is finger position as measured by the data-glove and 

�⃑�(𝑡𝑛) is the short-term memory AM feature vector described 

as: 

 �⃑�(𝑡𝑛) = [�⃑�(𝑡𝑛)�⃑�(𝑡𝑛−1)�⃑�(𝑡𝑛−2) … �⃑�(𝑡𝑛−𝑘)]𝑇 (3) 

where k is the number of the previous states stored. The 

coefficients matrix  of the model, 𝑊, is trained with the 

Wiener solution: 

 𝑊 = (�⃑�𝑇�⃑�)−1(�⃑�𝑇𝑑) (4) 

Since the inverse matrix operator in MATLAB software has 
a high computational weight, alternatively, the pseudo-
inverse operator was used. 

2) Artificial Neural Networks (ANN) 

Neural networks are one of the machine learning 

algorithms which has attracted an increasing amount of 

attention due to its high performance in a variety of  

applications [6], [15]. These networks are inspired by how 

the brain works and are able to model complex systems by 

mapping inputs into output space. ANNs also enables us to 

 
Fig. 3.  A sample of sub-band decomposition of the ECoG signal. First 

three plots (from up to the down) show the low, middle, and high 

frequency bands respectively and the one on the bottom shows the 

original ECoG signal. 

 

 
Fig. 1.  The schematic representation of the system 

 

 
Fig. 2.  Frequency response of different bands of the filter bank. 

 

 
Fig. 4.  A sample finger (Thumb) movement signal. 

 



  

produce nonlinear decision boundaries [6]. 

Since ANN can model non-linear relationships between 

input and output data, comparing its results with the LRM 

will provide us with a better understanding about the type of 

relationship between finger movements and ECoG signals. 
Here we used a feed-forward Multi-Layer Perceptron (MLP) 
ANN with one hidden layer (6 neurons in the hidden layer), 
trained with the Back Propagation (BP) algorithm. The 
TANSIG function was used as the transfer function for 
hidden layers while the PURELINE function was used for the 
final layer. The schematic structure of the ANN used in this 
study is illustrated in Fig. 6. We also increased the number of 
hidden layers (and their neurons) to see how increasing the 
number of hidden layers or hidden layer neurons affects the 
performance of the system. 

E. Reducing the size of the feature vector 

It is clear that not all the electrodes/bands have the same 

amount of hand movement information. Therefore, it is 

computationally optimal to find the features which have the 

most information and subsequently reduce the size of the 

feature vector by using the most relevant features pertaining 

to the task. 
In previous studies, sub-optimal trial and error methods 

were being used [13]. In this study, we used a fast, yet 
accurate, algorithm to find the most important features. We 
calculated the LRM weights for a short period of time (2000 
samples) and then sorted them based on the amplitude of 
their weights which corresponds to the correlation of the 
input signals and the output finger movements. Finally, we 
selected the first 200 features. We’ve also tested both 
algorithms, randomly selecting 200 features, in order to 
verify that decoding using features selected by our selection 
method always outperforms decoding using any other set of 
features with the same size. 

F. Post-filtering 

In this stage, to identify the time periods in which we had 

finger movements, we applied a zero-phase moving average 

(low pass FIR) filter to smoothen the output signal. The 

smoothened output will avoid frequent on-and-offs during 

finger movements for the threshold comparator described in 

the next section. 

G. Finger movement detector 

In the previous section, the maximum amplitude of the 

train data, when there was no finger movement, was 

multiplied by an empirically chosen coefficient (in this 

study, this coefficient was set equal to 1.25) and set as the 

threshold value to determine whether there was any 

movement or not. The schematic representation of the 

connection between all the different parts of the system is 

illustrated on the Fig. 1. 

III. RESULTS 

We have used the dataset described in [17] to 

demonstrate our results. The proposed algorithm for reducing 
the size of the feature vector leads to a 60-fold increase in the 
computational speed compare to the LRM approach without 
decreasing the size of the feature vector. Training a three-
layer feed-forward MLP with about 50 neurons without 
decreasing the feature size of the dataset used in this study is 
not computationally feasible or at least reasonable using 
commercially available computers. Moreover, none of the 
two decoding methods performed better using randomly 
selected features, showing that our feature selection 
algorithm does not compromise performance. 

The implemented LRM using the described feature 

selection method could achieve promising precision rates 

(by means of correlation) compared to previous studies. In 

addition, the ANN model outperformed the LRM only by a 

slight difference, emphasizing that although the functions 

which map the energy in the band-specific ECoG signals to 

finger movements are non-linear, they can be modeled 

linearly with acceptable error compared to non-linear 

approaches. Also, increasing the number of hidden 

layers/neurons in the ANN decreased its performance. This 

shows that the non-linear relationship between the input and 

output space is not considerable and the ANN will suffer 

from overfitting when increasing the number of hidden 

layers. The correlation values for real finger movements and 

estimation finger movements of all five fingers for the two 

models used in this paper are provided in Table I. These 

results were achieved by having 70% of the data as train data 

and the other 30% as test data. Please note that weights in 

both algorithms were calculated separately for each finger. 

After applying the post filter and incorporating the 

threshold comparator, the system could accurately report all 

finger movement spans using only ECoG signals as the 

input. The movement decoding, smoothed output, and the 

movement interval indicators for the LRM method, are 

illustrated on the Fig. 7. These results are for the test dataset 

and the system was not exposed to this data during the 

training phase.  

 
Fig. 6.  The schematic structure of the MLP ANN used in this study. 

 

 
Fig. 5.  A sample representation of input features. 



  

IV. DISCUSSION 

Both the LRM and ANN methods were able to detect and 

track finger movements with acceptable performance. The 

ANN outperformed the LRM only by a slight difference. It 

suggests that finger movement information is mainly a linear 

function of the energy in band-specific ECoG signals. It was 

also observed that the precision of the ANN method 

decreased when the number layers or the number of hidden 

layer neurons increased which in turn suggests that 

increasing the complexity of the model to catch more non-

linearity in the input output mapping will lead to overfitting. 

This shows, once again, that the relationship between finger 

movements and energy in band-specific ECoG signals, 

consists mainly of linear nature. 

We believe spatial filtering of neurons under a single 

electrode and recording noise will cancel out or distort non-

linear aspects of the data and make it very challenging for 

non-linear techniques to outperform linear ones. 

The feature selection algorithm used in this study selects 

features based on their performance in a short time run using 

the LRM. One might argue that this approach only focuses 

on features with a linear relationship to the output and leaves 

the features with a non-linear relationship out; therefore, it 

will bias our observations on the input-output relationship 

being mainly linear. However, this is not the case. First, 

these features are the ones which were the most active and 

had maximum correlation with the output. Although this is a 

linear correlation, it does not stop the ANN from finding any 

non-linear relationships within the selected features and the 

output space. Secondly, none of the decoding methods used 

performed better when using randomly selected features, 

which again suggests that hand movements are mainly 

represented by a linear transform of the energy in band-

specific ECoG signals. 

Finally, the results in this study are consistent with [15] 

where it is shown that non-linear decoding methods perform 

only slightly better than linear ones for EEG signals. This 

advocates that the scalp is not the main perpetrator causing 

the disappearance of the non-linearity in EEG signals, since 

this is also observed in ECoG signals. This suggests that the 

spatio-temporal summation of multiple neural signals is 

itself linearly correlated with movement, and is not an 

artifact introduced by the scalp or cranium. 
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Fig. 7.  Finger movement, finger movement estimation, smoothed 

estimation and the movement interval indicator signals. 

 

TABLE I 
CORRELATION VALUES FOR TWO MODELS 

Model Thumb INDEX Middle RING Pinky 

LMR 0.4016 0. 6722 0. 0876 0. 4470 0. 2344 

ANN 0.4015 0.6935 0.1010 0.4601 0.2426 

 

 


