
  

 

Abstract— Tendon-driven systems have many benefits over 

other actuation strategies such as torque-driven systems; 

however, their over-determined nature and posture-dependent 

actuation presents strong constraints on their control. Also, 

parameters or even exact structure of the model in these 

systems, especially in the biological ones, are normally not clear 

to the controller. Here, we propose a modified Genetic 

Algorithm that provides the tendon excursion values for the 

limb to follow a desired trajectory. Our results show that the 

proposed algorithm was able to accurately follow the desired 

trajectory without the model of the system being exposed to it. 

We believe that this method can enable biologically inspired 

tendon-driven mechanisms with variable mechanical structures 

to autonomously control their movements. 

I. INTRODUCTION 

Tendon-driven systems have many advantages over 
systems with other actuation strategies. Namely, tendon-
driven are less noisy, more clean and easier to maintain 
(since they don't need lubrication), shock absorbent, and less 
bulky (because they allow remote actuation) [1]. In addition, 
tendon driven-systems have more flexibility toward 
providing superior performance in achieving different goals 
[2]–[5]. For example, these systems are able to provide 
different end-point forces and velocities using different 
tendon routings [6]. Moreover, tendon-driven systems are 
also attractive to study since studying them helps us better 
understand mechanics of biological systems and their motor 
control strategies [7], [8]. 

Due to their nature, tendon-driven systems are harder to 
control compared to other actuation strategies such as torque-
driven systems [6]. Also, the control of the tendon-driven 
systems is studied very little compared to the control of the 
other actuation strategies [6], [9]. However, due to its unique 
properties discussed earlier, there is an increasing interest in 
their control strategies. In recent years, many scientists tried 
to address modelling and controlling tendon-driven systems 
in different ways [1], [3], [4], [10]–[12]. These control 
strategies vary from simple PID controllers to non-linear and 
adaptive control strategies to deal with complexities in 
control of these systems [1], [11]–[15]. However, in many 
applications, the system is either too complex to precisely 
model or the system parameters cannot be non-invasively 
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extracted (e.g. person specific moment arm values in human 
limbs) [10]. 

When developing motor abilities, biological systems do 
not have equations for the system that they are controlling. 
They simply try different strategies and gradually choose the 
best ones. This is mainly done by trying different activation 
combinations and evaluating its outputs using different 
feedback signals (e.g., visual feedback). We believe this is 
the same strategy that needs to be used to control tendon-
driven systems so that the actions of the controller mimic 
biological systems and it will be able to act autonomously 
independent of their model. This strategy will also reveal 
more details on how biological systems develop their motor 
actions. 

Genetic algorithm is a very powerful optimization tool 
used to solve a vast variety of the problems including control 
of complex systems [16]–[18]. In this paper, we are 
presenting a novel controller based on a modified version of 
GA to control a two Degrees of Freedom (DOF) limb with 
variable moment arm values using three tendons. We control 
the limb without the need for any information on model 
structure or parameter values. We do so by only providing 
methodically selected inputs and observing their 
corresponding output. The goal of this paper is to match the 
joint angles for each DOF with their desired values to follow 
a predefined trajectory. 

The rest of this paper is organized as follows: controller 
design and simulation model are discussed in section II. 
Results are provided in section III; and discussions over 
findings and potential improvements are provided in section 
IV. 

II. METHODS 

We have used a Python (an open source programming 

language) based simulation for the limb to evaluate the 

performance of the controller. The controller, however, 

doesn't have access to the model of the simulator and can 

only observe the error in each joint. 

A. Simulation Model 

We used tendon-driven limb physics to model a two 

DOF limb controlled with three tendons as described below 

[6]: 

 [

𝑑𝑠1
𝑑𝑠2
𝑑𝑠3

] = [
𝑅11 𝑅12 𝑅13

𝑅21 𝑅22 𝑅23
] [

𝑑𝑞1
𝑑𝑞2
𝑑𝑞3

] 

where 𝑑𝑠𝑖  is the excursion value for the 𝑖𝑡ℎ muscle, 𝑑𝑞𝑗 is the 

angular displacement for the  𝑗𝑡ℎ joint, and 𝑅𝑖𝑗 is the moment 
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Fig. 1. Moment arm values for 𝑅11 and 𝑅22 as a function of position. 

 

Fig. 2. The schematic (a) and  the 3D representation (b) of the 
simulation model. 

arm for the 𝑗𝑡ℎ muscle in the 𝑖𝑡ℎ joint. The base moment arm 
values for our model are represented in the moment arm 
matrix R which is represented in Eq. 2: 

 𝑅 = [
2 0 −3
0 1.5 −4

] 

To make the control of the system more challenging as 
well as making the model more realistic, we used variable 
moment arm values for 𝑅11 and 𝑅22 by adding sinusoidally 
changing values to their base values. The final moment arm 
values for 𝑅11 and 𝑅22 as a function of position are shown in 
Fig. 1. The schematic representation and the 3D simulation 
environment of this model are also shown in Fig. 2. On Fig. 2 
(a), the 𝑖𝑡ℎ DOF is shown by 𝐷𝑖  and the 𝑗𝑡ℎ tendon is shown 
by 𝑚𝑗. 

B. Genetic Algorithm Controller 

We first break the entire movement into discrete postures 
and then use GA to find the best tendon excursion values in 
each of these postures to fulfill the task (getting each joints' 
angle to the predefined desired values). We defined the 
fitness function as the sum of the square error between the 
limb angles and the desired angles. We made sure to have the 
configurations of the algorithm in a way that solutions with 
better fitness values have a higher chance of reproduction 
which gives the algorithm a flavor of reinforcement learning. 

Moreover, GA is very sensitive to its initial population. A 
good selection for initial population can reduce the chance of 
getting stuck in a local minimum as well as the time duration 
required to find an optimal solution. Since we know that 
muscle excursion values in a continuous movement are also 
continuous, we transferred the optimal solution found for 
each position during the movement to the initial population 
of the next position. We did so in order to reduce the 
exploration needed to find the optimal solution for the new 
position. Since we have to run GA for every each posture in 
the movement, this adjustment greatly reduces the total time 
needed to find optimal solutions while lowering the chances 
of getting stuck in local minima.  

The maximum acceptable error value (the threshold for 
the fitness function) for the GA was set to 0.5 and the 
population size was 32. All other details on the GA used in 
this paper are available at https://github.com/marjanin/GA_T. 

Since the model has two DOF, in order to control the 
position of the limb, it is enough to find the excursion values 
for two tendons and make sure the third one is not slack. 
Therefore, we found excursion values for two tendons using 
the proposed GA and plotted (on the results section) the 

values for the third using the model equations. In non-
simulation systems, we can just pull the third tendon until it 
is fighting other motors and is not slack. i.e., this method 
works without the need of any information on the parameters 
or the structure of the controlled system. 

C. Task and Fitness Descriptions 

The task defined to test our controller was to follow a 

predefined trajectory. The trajectory consisted of 360 

equidistant points selected from a circle. In this paper, we 

have provided results for a circular trajectory. We also 

define fitness as the sum of the squared error in each joint 

(compared to the desired angles). 
 

III. RESULTS 

In this section, we have provided the results for the 
position tracking task as well as the other performance 
metrics for the GA. Joint angles, tendon excursion values, 
and the limb end-point trajectories during the tracking task 
are represented on Fig. 3 (a), Fig. 3 (b), and Fig. 3 (c), 
respectively. 

Fig. 4 (a) shows the best and the mean fitness values for 

the GA algorithm for a sample position as a function of the 

generation number. Fig. 4 (b) represents the time duration for 

each step to find the optimal solution. Finally, Fig. 4 (c) is the 

histogram showing the distribution of the data in Fig. 4 (b). 

 

For the sample circular trajectory task discussed here, our 

modification to GA in transferring the final solution of each 

step to the initial population for the next step reduced the 

total run time of the algorithm from 3484.30 seconds 

(without the modification) to 1832.74 seconds (47.4% faster). 

This means that on average, the optimization takes 5.09 

seconds to run for each simulation step. 

IV. DISCUSSION 

Fig. 3 (c) shows that our system was able to find the 

solution within the allowed maximum error value (see 

methods) in 100% of cases. This is very encouraging, 

especially considering that the controller was not exposed to 

any information on the structure of the model or its 

parameters.  



  

 

Fig. 3. Tendon excursion values (a), joint angle vs. the desired joint angle trajectories (b), and the limb end-point vs. the desired end-point trajectories 
(c) during the tracking task. 

 

Fig. 4. Performance plots for the GA algorithm. Fitness as a function of generation (a). Elapsed time to find the solution for each posture (b) and the 
histogram of these time values (c). 

Moreover, as can be seen on Fig. 3, all trajectories are limit 

cycles (closed trajectories that repeat themselves). This, as 

discussed earlier, shows the continuous transition of variables 

in our system which is expected in real physical systems. 

This continuity justifies our modification to the GA to use the 

final solution from each step as an initial start point for the 

next step, which considerably reduced the run time of the 

optimization (see results). In addition, Fig. 4 shows that 

although our modification was helpful in reducing the run 

time in most of the steps, the algorithm still needed to explore 

a wider space for some of the steps. This exploration depends 

on the maximum allowable error value (threshold for the 

fitness function) since the maximum allowable error defines 

if the optimal solution from each step is an acceptable 

solution for the next step or not (based on the fitness value). 

Based on the results provided here, we believe that our 

method will enable tendon-driven systems to autonomously 

find corresponding tendon excursion values for every each 

posture or motion regardless of the differences in their 

structures or model parameter values. 

In terms of the potential future work, using this system in 

company with biologically inspired limb models that 

represents elasticity of tendons is very interesting area to 

investigate since it will provide more information on the 

effects of physics of the biological systems in their control. 

Moreover, here we modified and improved the performance 

of the GA by only utilizing the continuity of the tendon 

excursion manifolds. We believe that adding up sensory 

manifold information, similar to what happens in the 

biological systems [19], [20], can increase the performance of 

the controller even further. In addition, it would be 

interesting to evaluate performances of other machine 

learning algorithms such as neural network controllers in 

combination with the biological features which are 

mentioned above and compare and contrast them with the 

method used here. Lastly, here we used a simplified 

kinematic model. A more comprehensive approach would be 

to make the model more realistic by adding inertias and 

angular acceleration values as well as adding dynamics such 

as joint impedance values. 
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