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Abstract

Biological and robotic grasp and manipulation are undeniably similar at the level of mechanical task performance.
However, their underlying fundamental biological vs. engineering mechanisms are, by definition, dramatically
different and can even be antithetical. Even our approach to each is diametrically opposite: inductive science for the
study of biological systems vs. engineering synthesis for the design and construction of robotic systems. The past 20
years have seen several conceptual advances in both fields and the quest to unify them. Chief among them is the
reluctant recognition that their underlying fundamental mechanisms may actually share limited common ground,
while exhibiting many fundamental differences. This recognition is particularly liberating because it allows us to
resolve and move beyond multiple paradoxes and contradictions that arose from the initial reasonable assumption of
a large common ground. Here, we begin by introducing the perspective of neuromechanics, which emphasizes that
real-world behavior emerges from the intimate interactions among the physical structure of the system, the
mechanical requirements of a task, the feasible neural control actions to produce it, and the ability of the
neuromuscular system to adapt through interactions with the environment. This allows us to articulate a succinct
overview of a few salient conceptual paradoxes and contradictions regarding under-determined vs. over-determined
mechanics, under- vs. over-actuated control, prescribed vs. emergent function, learning vs. implementation vs.
adaptation, prescriptive vs. descriptive synergies, and optimal vs. habitual performance. We conclude by presenting
open questions and suggesting directions for future research. We hope this frank and open-minded assessment of
the state-of-the-art will encourage and guide these communities to continue to interact and make progress in these
important areas at the interface of neuromechanics, neuroscience, rehabilitation and robotics.
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Introduction
Grasp and manipulation have captivated the imagination
and interest of thinkers of all stripes over the millennia;
and with enough reverence to even attribute the intellec-
tual evolution of humans to the capabilities of the hand
[1–3]. Simply put, manipulation function is one of the key
elements of our identity as a species (for an overview, see
[4]). This is a natural response to the fact that much of
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our physical and cognitive ability and well-being is inti-
mately tied to the use of our hands. Importantly, we have
shaped our tools and environment tomatch its capabilities
(straightforward examples include lever handles, frets in
string instruments, and touch-screens). This co-evolution
between hand-and-world reinforces the notion that our
hands are truly amazing and robust manipulators, as well
as rich sensory, perceptual and even social information.
It then comes as no surprise that engineers and physi-

cians have long sought to replicate and restore this
functionality in machines—both as appendages to robots
and prostheses attached to humans with missing upper
limbs [5]. Robotic hands and prostheses have a long and
illustrious history, with records of sophisticated articu-
lated hands as early as Gottfried ‘Götz’ von Berlichingen’s
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iron hand in 1504 [6]. Other efforts [7–11] were often
fueled by the injuries of war [12–15] and the Industrial
Revolution [16]. The higher survival rate in soldiers
who lose upper limbs [17, 18] and the continual emer-
gence of artificial intelligence [19, 20] are but the latest
impetus. Thus, the past 20 years have seen an explosion
in designs, fueled by large scale governmental funding
(e.g., DARPA’s Revolutionizing Prosthetics and HAPTIX
projects, EU’s INPUT and SOFTPRO projects) and pri-
vate efforts such as DeepMind. A new player in this space
is the potentially revolutionary social network of high-
quality amateur scientists as exemplified by the FABLAB
movement [21]. They are enabled by ubiquitously accessible
and inexpensive 3D printing and additive manufactur-
ing tools [22], collaborative design databases (www.
eng.yale.edu/grablab/openhand/ and others), and com-
munities with formal journals (www.liebertpub.com/
overview/3d-printing-and-additive-manufacturing/621/
and www.journals.elsevier.com/additive-manufacturing/).
Grassroots communities have also emerged that can,
for example, compare and contrast the functionality
of prosthetic hands whose price differs by three orders
of magnitude (www.3dprint.com/2438/50-prosthetic-3d-
printed-hand).
For all the progress that we have seen, however, (i)

robotic platforms remain best at pre-sorted, pick-and-
place assembly tasks [23]; and (ii) many prosthetic users
still prefer simple designs like the revered whole- or split-
hook designs originally developed centuries ago [24, 25].
Why have robotic and prosthetic hands not come of

age? This short review provides a current attempt to
tackle this long-standing question in response to the
current technological boom in robotic and prosthetic
limbs. Similar booms occurred in response to upper limb
injuries [25] after the Napoleonic [26], First [12] and
Second World Wars [8], and—with the advent of power-
ful inexpensive computers—in response to industrial and
space exploration needs in the 1960’s, 1970’s and 1980’s
[27–32]. We argue that a truly bio-inspired approach suf-
fers, by definition, from both gaps in our understanding of
the biology, and technical challenges in mimicking (what
we understand of) biological sensors, motors and con-
trollers. Although biomimicry is often not the ultimate
goal in robotics in general, it is relevant for humanoids
and prostheses. Thus, our approach is to clarify when
and why a better understanding of the biology of grasp
and manipulation would benefit robotic grasping and
manipulation.
Similarly, why is our understanding of the nature,

function and rehabilitation of biological arms and
hands incomplete? Jacob Benignus Winsløw Jacques-
Bénigne Winslow, (1669—1760) noted in his Exposition
anatomique de la structure du corps humain (1732) that
‘The coordination of the muscles of the live hand will

never be understood’ [33]. Interestingly, he is still mostly
correct. As commented in detail before [4], there has been
much work devoted to inferring the anatomical, physio-
logical, neural and cognitive processes that produce the
upper limb function we so dearly appreciate and passion-
ately work to restore following trauma or pathology. We
argue, as Galileo Galilei did, that mathematics and engi-
neering have much to contribute to the understanding
of biological systems. Without such a ‘mathematical lan-
guage’ we run the risk, as Galileo put it, of ‘wandering in
vain through a dark labyrinth’ [34]. Thus, this short review
also attempts to point out important mathematical and
engineering developments and advances that have helped
our understanding of our hands.
This review first contrasts the fundamental differences

between engineering and neuroscience approaches to bio-
logical robotic systems. Whereas the former applies engi-
neering principles, the latter relies on scientific inference.
We then discuss how the physics of the world provides
a common ground between them because both types of
systems have similar functional goals, and must abide
by the same physical laws. We go on to evaluate how
biological and robotic systems implement the necessary
sensory and motor functions using the dramatically dif-
ferent anatomy, morphology and mechanisms available to
each. This inevitably raises questions about differences in
their sensorimotor control strategies. Whereas engineer-
ing system can be designed and manufactured to opti-
mize well-defined functional features, biological systems
evolve without such strict tautology. Biological systems
likely evolve by implementing ecologically and temporally
good-enough, sub-optimal or habitual control strategies
in response to the current multi-dimensional functional
constraints and goals in the presence of competition, vari-
ability, uncertainty, and noise. We conclude by exploring
the notion that the functional versatility of biological sys-
tems that roboticists admire is, in fact, enabled by the
very nonlinearities and complexities in anatomy, senso-
rimotor physiology, and neural function that engineering
approaches often seek to avoid.

Deductive and inductive science for the study of
biological systems vs. engineering synthesis for
the construction of robotic systems
As we have discussed before [35], any understanding of a
biological system is done by a difficult scientific process of
logical inference [36]1. Scientific inquiry, in particular, is
a combination of a deductive (top-down logic) approach
that invokes laws of physics and inductive (bottom-up
logic) reasoning that uses specific instances of observed
behavior in the complete system (e.g., gait, flight, manip-
ulation) to build conceptual, analytical or computational
models (i.e., hypotheses) about how constitutive parts
interact to produce the overall behavior. In contrast, the
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engineering perspective is to use proven physical laws (i.e.,
mechanisms) to synthesize and build complex systems,
like robots. The multiple technological successes of this
engineering approach naturally encourage us to identify
such fundamental mechanisms in biological systems, and
assemble models and hypotheses about how they inter-
act in biological systems to explain vertebrate function
and dysfunction—and apply them to revolutionize reha-
bilitation medicine and build better machines that are
either bio-inspired or able to interact with humans (e.g.,
exoskeletons).
Thus, this engineering approach has been used

by biomechanists, kinesiologists, clinicians, and
computational- and neuro-scientists to build models to
address questions such as What is the control strategy
the nervous system uses to (i) move the arm to place the
hand in a sequence of locations in space? Or (ii) reach to
an object and grasp an object? Or (iii) use the fingers to
use a hand held tool? Similarly, How do specific parts of
the brain contribute to produce specific features of reach,
grasp and manipulation? (for recent reviews see, e.g.,
[4, 37–41]).
For example, neuroscientists have characterized the cor-

tical networks responsible for selection of hand postures,
forces and dexterous manipulation [42, 43]. Specifically,
invasive and noninvasive recordings from cortical regions
in non-human and human primates, and non-invasive
brain stimulation studies in humans have revealed the
functional role of sensory, premotor, motor, and associ-
ation areas in motor planning, sensorimotor adaptation,
grip type selection, storing and retrieving sensorimotor
memories of hand-object interactions, and controlling
grasping and manipulation (for review see [40]).
However, inferring valid models of biological systems

is not trivial. It remains reasonable to ask whether it is
even possible for us to produce robust insights about
the mechanisms underlying complex neuromuscular sys-
tems [44]. Scientific inquiry requires that we trust current
(imperfect) theories of the mechanisms behind the mate-
rial properties, sensors, muscles, and neural processing
in biological systems which, when interacting with phys-
ical laws in a particular functional regime (e.g., turbulent
and laminar flow, continuum and rigid body mechan-
ics, stable and unstable dynamical domains, information
theory, etc.), give rise to the observed biological behav-
ior. Unfortunately, the differences that invariably emerge
between model predictions and experimental data can be
attributed to a variety of sources, ranging from the valid-
ity of the scientific hypothesis being tested, the choice of
each constitutive element, or even their numerical imple-
mentation [35, 45]. Even when conceptual, analytical or
computational models are carefully assembled, the mod-
eler must make arbitrary choices that often affect the
predictions of the model in counterintuitive ways. Some

examples of unavoidable choices are the types of models
for joints (e.g., a hinge vs. articulating surfaces), mus-
cles (e.g., simple low pass filters, Hill-type, populations
of motor units), controllers (e.g., proportional-derivative,
Bayesian, internal models, optimal control), and solution
methods (e.g., forward, inverse) [35]. These choices are
driven, at best, by a comprehensive distillation of the
vast literature, a focused research scope, or intentional
sidestepping of unknown aspects of model elements and
their interactions that cannot be easily or accurately mea-
sured experimentally—and thus, cannot be confidently
included in the model. At worst, (over)simplifications are
driven by biological/mathematical/computational conve-
nience or expediency.
A salient example of applying scientific findings to

robotic systems is the application of kinematic (postu-
ral) hand synergies to the design of the controller for
a robotic hand, such as the Pisa/IIT SoftHand [46].
This design is based on using the first principal com-
ponent computed from a set of static hand postures
recorded in human subjects while grasping imagined
objects [47]. Here, the observed covariation in joint
angles of the digits was captured by the first principal
components accounting for over 50% of kinematic data.
This inspired the robotic design of the Pisa/IIT Soft-
Hand where a single actuator drives the motion across
multiple digits along that main joint-angle coordination
pattern.
It is important to note that it is perhaps the compliance

built into this robotic hand by design that allows a pas-
sive (i.e., uncontrolled) adaptation to the specifics of each
grasp [48]. Such counter-intuitive and often overlooked
contributions of ‘passive’ structures to static and dynamic
functional versatility falls within the realm of morpholog-
ical computation—a longstanding concept that is being
revisited as an important contributor to the versatility of
biological systems, robots and prosthetics (e.g., [49–53]).
The status quo in traditional robotics is a prime exam-

ple of the converse, i.e., engineering synthesis. That is,
building robotic systems that are the embodiment and
application of the closed-form mathematical, design, and
control principles we have and understand well. To give
an example discussed in detail below, many robots are
designed to have rotational motors. This comes from the
fact that the torque-control formulation for robotics is
well developed [54].
However, the control of robotic systems can also depend

heavily on a deductive approach. Namely, most control
architectures include an idealized mathematical model of
the system they are controlling (i.e., the so-called plant2)
[55, 56]. It is common practice to, for example, use sys-
tem identification techniques [57, 58] to use experimen-
tal data to infer a data-driven model, i.e. input/output
transfer function of the plant ‘as built’ [59–61]. These
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models range from linear models through to nonlinear
and probabilistic approximations to the robotic system’s
dynamics [62–66]. This is especially necessary when using
optimal control formulations which depend critically on
an accurate model of the plant [67]. These limitations are
currently being addressed by real-time model predictive
control strategies that continually update families of pos-
sible models of the plant (and their states), and operate
only over a limited time horizon, e.g., [68].

Mechanics and neuromechanics as the common
ground between biological and robotic systems
The fields of biological and robotic behavior are, fortu-
nate in that principles of mechanics are at the root of
both evolutionary biology and robotics. Darwinian evo-
lution and Newtonian mechanics are unforgiving arbiters
that continually shape what is possible and successful in
the physical world. Thus, even though animals have had to
evolve whereas robots have had to be designed and built,
both had to successfully withstand and exploit the laws of
mechanics [54]. Therefore, studying biological systems in
the context of the physical function of grasp and manipu-
lation does have the possibility of providing insights into
how the structure of the body, information processing
in the nervous system, and their interactions give rise to
complex behavior.
An appropriate name for this approach isNeuromechan-

ics. To our knowledge, this term was first coined by Enoka
in his 1988 book Neuromechanical Basis of Kinesiology
[69]. We use the term neuromechanics as describing the
functional co-adaptations of the nervous, motor, sensory
and musculoskeletal systems to produce effective and ver-
satile mechanical behavior with a physical body in the
physical world. In a field that mostly emphasizes the cog-
nitive capabilities of the mammalian brain, it is easy to
overlook that the nervous system and body co-evolved
well before mammals appeared [70]. Thus, there is much
to be learned when studying neural function using phys-
ical behavior by the periphery (i.e., limbs) as a means to
understand central (i.e., neural) function [54]. But how
can we move away from the difficulties in deductive infer-
ence mentioned in the prior section?
One promising approach is to use synthetic anal-

ysis to build neuromorphic neuromechanical systems
that exploit physical reality as the common ground
between biological and robotic systems. The neuromor-
phic approach reflects the sentiment expressed by Richard
Feynman, ‘What I cannot build I do not understand. Know
how to solve every problem that has been solved.’3 In our
context, it can be taken to mean that, if we have over
one hundred years of sensorimotor neuroscience since
Sir Charles Sherrington [71], and if the principles we
have deduced are sound, then we should be able to build
components that embody thosemechanisms in such a way

that when assembled they behave like biological systems
[72, 73]. One example of such a neuromorphic approach
uses ultra-fast computer processors to simultaneously
implement populations of autonomous, interconnected
spiking neurons in real time that follow Hodgkin-Huxley
rules of how action potentials in neurons are initiated and
propagated [74]. As mentioned in [72, 75], this general
approach has also been successfully applied to under-
stand mechanisms of memory, visual representation, and
cognitive function. Note that neuromorphic is distinct
from neuromimetic or neuroinspired. Biomimetic (neu-
romimetic) and bioinspired (neuroinspired) work seeks to
copy or replicate the biological (neural) behavior by any
engineering means—like prosthetic hands that have no
muscles or tendons, or airplanes that fly without flapping
wings. In contrast, neuromorphic approaches use engi-
neering means to implement the biological mechanisms
themselves.
As explained in [72], we have taken this approach one

step further by combining neuromorphic and neurome-
chanical approaches we seek to implement the neural con-
trol of the body—effectively merging biology and robotics
in the arena of physical function. We have coupled real-
time neuromorphic implementations of stretch reflex cir-
cuitry in populations of spinal neurons, to electric motors
controlled by real-time models of muscle function to
apply forces to the tendons of actual human cadaveric
fingers. This is the first neuromorphic neuromechani-
cal system, to our knowledge, that has put our under-
standing of fundamental sensorimotor mechanisms in the
spinal cord to the ultimate test of physical implementa-
tion. Importantly, the behavior emerges from the system
as it is not prescribed beyond the nature and connectiv-
ity of its elements. An added advantage is that one can
also ‘record’ from single or multiple neurons, motor units,
afferent nerves, etc. to explore emergent behavior at truly
multiple scales. So far, this approach has allowed us to
begin to understand cardinal features of afferented mus-
cles of human fingers to replicate fundamental features of
healthy muscle tone, hypo and hypertonia [73].
While still an imperfect approximation, this neo-

Sherringtonian approach helps us test arguments about
which specific features of spiking neurons and their con-
nectivity, spindle function, fusimotor drive, descending
commands, finger anatomy and tendon/skin/joint tissue
properties suffice to produce realistic healthy and patho-
logic behavior in afferented muscles acting on anatomical
fingers. Moreover, this has the advantage of using phys-
ical behavior as the ground truth for the evaluation of
functional performance.
A combined neuromorphic and neuromechanical

approach, although grounded and developed for neuro-
scientific applications, could potentially inspire robotics
research and design by revealing insights into how
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complex behaviors emerge from adaptation of neural
controllers to mechanical properties of physical systems.

Fundamental differences between biological and
robotic systems
Sensory differences
From the perspective of biological vs. robotic closed-loop
behavior, a striking difference is the superior ability of
the nervous system to utilize and effectively integrate
information acquired through an incredibly wide array of
nonlinear, delayed, noisy, non-collocated and distributed
sensors (for review, see [76]). Important advances have
been made in our understanding of how multimodal sen-
sory information is integrated to make possible the ability
of humans to extrapolate sensory information based on
the statistical properties of stimuli [77], as well as its
vulnerability to sensory illusions [78].
Remarkably, the hand’s sensory system endows humans

not only the ability to perform online sensing of the state
of the system (e.g., contact onset and offset) [79, 80],
but also to use sensory information acquired through
past hand-object interactions to predict sensory conse-
quences stemming from planned interactions [81, 82].
Even more impressive is the exquisite ability of ver-
tebrates to perform ‘active sensing’ (e.g., whisking in
rodents [83, 84]) and tactile exploration in humans of
the shape, texture, features and mechanical properties
of objects [85, 86]4. In active sensing, motor actions
are explicitly driven to extract relevant sensory infor-
mation [87]. This has led some to express that the
human hand is as much a sensory organ as a motor
effector [88].
In robotics, sensory data are central to feedback con-

trol [89]. The idea of extending the use of sensory data
beyond feedback to also extract the properties of a sys-
tem is called system identification [58] or ‘plant inversion’
[79, 90]. That is, characterizing the effects of command
signals (i.e., the input-output characteristics of the plant)
can be done when the process is inverted mathematically
(i.e., find the output-input characteristics), analytically or
experimentally. Hence the term ‘plant inversion.’ System
identification has been an extensive field since the mid-
dle of the last century [57, 91], and continues to make
progress as sensors and algorithms improve, and process-
ing power increases [92–95].
An important challenge in tactile sensors is their prob-

lematic placement at the fingertips, where they are
exposed to damage [96, 97]. A notable advance has been
the biomimetic idea by Loeb and Johansson to develop
the Biotac [98, 99], where the fingertip itself is a rugged
and ribbed rubber balloon (much like a fingerpad) inflated
with conductive fluid over the distal bone. Static and
dynamic contacts with objects produce changes in hydro-
static pressure and electrical impedance in the fluid

that produce a rich and time-varying multi-dimensional
sensory signal. The commercial version of this system is
now being incorporated into multiple robotic hands [100].
It is even being deployed to create industrial standards
for the perceptual aspects of touch such as smoothness,
roughness, silkiness, richness, quality, etc. Solving the
difficult signal processing challenges that this type of tac-
tile sensor presents has the potential to imbue robotic
hands with truly robust and useful synthetic touch. Solv-
ing the computational challenges of sensory fusion (let
alone active sensing) in robotic and prosthetic systems is
a critical frontier. There are even efforts at the interface
of prosthetics and robotics to translate touch information
from prosthetic hands into neurostimulation to restore
the sense of touch (e.g., [101–103]).
Artificial feedback approaches, of course, extend

beyond these examples of sensors located on the finger-
tips, and include artificial skins with embedded strain
gauges (e.g., [104]) and vibrotactile feedback used in pros-
thetics delivering information about mechanical events
(i.e., contact) to the residual limb (e.g., [105]).
Nevertheless, the necessity of sensory information for

manipulation has been challenged by practical examples
of sensor-less fully open-loop grasp [46, 48, 53, 106, 107],
and pre-planned manipulation [108]. It is therefore most
likely that in biological systems—and by extension in
robots—sensory information is most useful during learn-
ing [80] (see section on learning below).

Motor differences
Chief among these is our inability, so far, to match
the power:weight ratio, mechanical efficiency, versatility,
adaptability and self-repair properties of muscle. A pneu-
matic analog to muscle was first developed by McKibben
in the 1950’s [109–111] and continues to be used and stud-
ied [112, 113], but the need for compressors/pressurized
tanks, valves, cables, mufflers, etc. remains a challenge to
its portability and versatility. Electric, hydraulic and pneu-
matic actuators are, of course, the mainstay of robotics.
The last two decades have seen great progress in the tech-
nology to control [114] and power useful and portable
exoskeletons and prostheses [115–117]. Moreover, battery
life has improved by several orders of magnitude [118–
120]. However, muscles remain unmatched in the con-
tinually surprising variety of mechanical functions they
accomplish in locomotion and manipulation; serving as
motors, brakes, springs, struts, etc. [121, 122].
From the architectural perspective, contractile pro-

teins in muscle can only make muscles actively pull on
their tendons, which attach to bones after crossing joints
[123, 124]. Consequently limb function in vertebrates is
tendon-driven, not torque-driven as in the mathematics
and dominant practice of robotics.
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A recent conceptual advancement in the study of sen-
sorimotor control in vertebrates comes from embracing
and emphasizing the fact that muscles act on the body via
tendons [54]. While this has been obvious since the very
first anatomical studies of antiquity, most modern engi-
neering, neuroscience, biomechanical, and mathematical
analyses have tended to prefer the torque-driven abstrac-
tion. To be fair, the torque-driven phrasing of the problem
is attractive, mathematically correct, and well developed
from the conceptual, analytical and computational per-
spectives. In it, rotational motors at each hinge joint
produce torque, angle, or angular velocity directly, which
give rise to the kinematics and kinetics of the limbs and
fingers they control. The actions of muscles in a simu-
lated biological system are, thus, collapsed into net joint
torques at each joint. Then, their analysis proceeds as
with any other robotic system. But there are several argu-
ments concluding that this abstraction can be misleading
as it does not represent the actual mechanical problem
of controlling tendons, which is the actual problem the
nervous system confronts. Due to recent advances in the
tendon-driven formulation of limb and finger function
(e.g., [54, 125–129]), we are now better able to focus on
the actual tendon-driven mechanical problem that con-
fronts the nervous system. In fact, as argued in [54], many
of the conceptual/mathematical problems associated with
the analysis of the neuromuscular control of biological
limbs can be clarified by using this perspective.

Sensorimotor control
Due to the above-described limitations of scientific infer-
ence, it is not surprising that competing views exist on
the model (i.e., hypothesis, strategy) that best explains the
nervous system’s exquisite ability to control movement,
locomotion and manipulation; as well as its uncanny abil-
ity to generalize and adapt learned motor behaviors. For
example, the concepts of ‘internal models’ and ‘optimal
control’ can capture significant features ofmotor behavior,
but it has been challenging to associate these theoretical
frameworks with specific anatomical structures or physi-
ological mechanisms. It is only natural that some of these
models have been inspired by the formalism and suc-
cesses of robotics and control theory, which in turn have
been influential in driving experimental approaches and
theoretical frameworks (for review, see [130]).
However, even a cursory comparison between how

robotic and human hands reach, grasp and manipulate
objects reveals major differences between them. Some
differences stem from ability of the neuromuscular sys-
tem to implement versatile transitions, adjustments and
adaptations of control strategies. One example is the abil-
ity of the hand to swiftly change control strategies when
transitioning from finger motion to force application
[131]. Another example is humans’ ability to modulate

finger force distribution shortly after contact and prior
to onset of manipulation to account for trial-to-trial vari-
ability in finger placement [132–136]. Such problems are
extremely challenging to replicate in a robotic system.
Other differences emerge from the hand’s unique anatom-
ical structure, which allows it to adapt to task demands
including passively shaping itself to object geometry.
These are differences that robotic designs can partially
address (see ‘Under- vs. Over-actuated control’ section),
but cannot fully match given the limitations of robotic
systems in actively integrating sensory feedback with
motor commands, or passively adapting to objects and the
environment.

Advantages and limitations of control theoretic
approaches to biological sensorimotor control
These fundamental differences motivate and justify a can-
did evaluation of the extent to which our conceptual
approaches to robotics are appropriate for the study of
sensorimotor control in biological systems. As mentioned
above, the approach to biological sensorimotor control
has, forhistorical andpractical reasons, leveraged the formal-
ism of robotics and control theory (e.g., [29, 54, 137, 138]).
At the risk of oversimplifying a large field for the sake of
succinctness, we can describe real-time feedback control
as follows: sensors transduce physical signals to estimate
the performance of the system, which the controller con-
siders as it applies control laws to take the next actions
to correct mistakes, reject perturbations, and meet the
constraints of the task to achieve a goal. It stands to rea-
son that the neuromuscular control of biological systems
can perform all of these functions. Therefore, control-
theoretic constructs likely apply (e.g., [139–143]). Such
an approach is justified by the successes in identifying
neural circuits that perform closed-loop feedback con-
trol such as homeostasis in physiological control systems
[144], muscle stretch reflexes [145], and vestibulo–ocular
reflexes for eye tracking in the presence of head rotation
[146, 147].
Why is it that such a well-founded approach has failed

to produce conclusive theories for sensorimotor control
in humans for grasp and manipulation?5 One possibility
is that sensorimotor control for grasp and manipulation
is unlike other forms of motor control because its motor
actions involve perception, as well asmore complex senso-
rimotor transformation processes than, say, cyclical move-
ments for locomotion. The importance of the interaction
between perception and action has been convincingly
argued by, for example, Prinz, Iberall and Arbib [148–151].
This is further exemplified by other work bridging this
perception-action gap [152–157].
This conceptual divergence across biological and

robotics problems can perhaps be explained by assessing
some fundamental features of the robotics perspective,
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and their appropriateness for the study of sensorimotor
control in biological systems. Earlier, we spoke of the
control-theoretic framework that defines interactions
among sensors, control laws and the goal of the task. A
more formal presentation is that the control laws operate
to change the ‘state’ of the system. The formal definition
of the state of a system is the minimal set of variables
to characterize its governing equations, or that can be
used to describe its dynamical evolution [29, 55, 158].
Thus, control theory is based on actions that will effec-
tively and appropriately change the state to reach a goal,
track an external process or reject a perturbation on the
basis of a user-defined optimization criterion (often called
objective or cost function). In fact, the definition of ‘con-
trollability’ is to be able to arbitrarily move a system from
any state to any other state in finite time. Its counter-
part is ‘observability,’ which is the formal quantification
of the ability to arbitrarily extract the state of the system
frommeasurements obtained by sensors [159, 160].When
designing a robotic system, its state variables are explic-
itly chosen by the user from the many potential options,
such as joint angles, angular velocities, endpoint locations,
velocities, etc. Implementing observability via methods of
state estimation is a form of system identification that
spans a wide set of techniques, and which is central to
any control-theoretic approach applied to robotics and
models of biological function [35, 158, 161].
The field of neuromuscular control has come to the real-

ization that it is still an open question whether and how
the nervous system adopts the concept of state, and even
whether it optimizes an explicit or implicit cost function
[54, 162, 163]. This realization has been slow and reluctant
because abandoning the sound engineering formalism is
both unappealing and unnecessarily extreme. Thankfully,
the past several decades have seen, as described below, the
development of equally well-founded alternatives or com-
plements to the classical control theoretic perspective that
mitigate the drawbacks of state estimation, cost functions
and even control laws. Furthermore, there are many other
techniques and approaches that have yet to be applied to
biological problems [35].

Feasible rather than optimal function
Optimization is a computationally efficient means to use
convex, preferably quadratic, cost functions to select a
specific control action from among all feasible actions
within a high-dimensional solution space. For example, if
you have N muscles crossing a joint, optimization can be
used to search an N-dimensional space to find a point in
it (i.e., a combination of muscle activations) to produce a
given net joint torque while minimizing, say, the sum of
squares of activations.
Roboticists have always used optimization to control

robots. Be it to tune gains in the P, PD or PID controllers

to implement force, impedance and position control [55],
plan paths (e.g., [164]), etc. In fact, the ubiquitous of
state estimators (such as Kalman Filters) are in fact opti-
mal solutions in the least-square sense [165]. In addition,
this emphasis on optimality is central to Optimal Control
[158] in its variousmodern forms LQR, LQG, iLQR, iLQG
(e.g., [166]). From its inception, however, which has led to
other forms of control such as robust control, path integral
control, model predictive control, etc. [67, 167–169].
Biomechanists and neuroscientists have, neverthe-

less, adopted the well-founded mathematical concept of
optima to cast the problem of neuromuscular control as
one of numerical optimization [139, 170, 171]. However,
it is unlikely that the nervous system acts strictly like a
computer running optimal control, gradient descent or
policy gradient algorithms. Rather, optimization has and
should be used as a metaphor, but one that should not be
taken too literally when working with biological systems
[162, 163].
Wemust recognize that, as with any metaphor, there are

limits to its validity. It is important to explicitly acknowl-
edge a bifurcation in the approaches we use to build robots
vs. understand biological systems. For example, recent
advances in control have begun to yield very impressive
real-time performance in physical robots [68, 172–174]—
but there is no need to insist that biological systems use
those methodologies or algorithms.
Nevertheless, scientists studying biological systems

must ask themselves how faithful they want to adhere to
physiological realism and, on the basis of that decision,
select appropriate problems and solution methods—while
also avoiding the temptation to necessarily imbue biolog-
ical systems with mathematical algorithms, or solutions
with physiological meaning.
An approach we can call Feasibility Theory is an alter-

native to optimization. It tackles and solves the compu-
tationally expensive problem of explicitly defining and
finding families of valid solutions (i.e., a ‘feasible muscle
activation set’)[54]. In doing so, we can characterize the
set of options open to the nervous system without hav-
ing to advocate a particular (and debatable) cost function
[54, 175, 176]. These families of feasiblemuscle activations
have a well-defined, low-dimensional structure because
they emerge, unavoidably and naturally, from the inter-
actions among the known mechanical and physiological
properties of the limb and the functional constraints of the
task (which can be mechanical, metabolic, physiological,
etc.). That is, if you have a limb with 9 muscles and you
are producing a task with five constraints (e.g., the x, y, z
magnitude of the force vector produced by the endpoint
of the limb, and the stiffness of the endpoint in the x and
y directions), then the solution space is a 4-dimensional
(i.e., 4=9-5) subset of the 9-dimensional activation space
[177, 178].
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More generally, thinking of the problem of control-
ling muscles as one of exploring and exploiting solu-
tion spaces is perhaps biologically tenable. Biological
systems could use sparse trial-and-error learning to
find and explore feasible activation sets. That is, imple-
menting any point within the low-dimensional feasi-
ble solution space will be adequate to perform the
task. Memory and pattern matching could be used to
exploit the ‘information’ collected from prior experi-
ence in the context of the current environment and task
goals [54].

Probabilistic sensorimotor control
What information does the nervous system use to produce
physical behavior? And how does it assemble, encode,
store, access and use that information? A promising
approach is a probabilistic one, where trial-and-error can
be combined with memory to form probabilistic rep-
resentations of actions in the physical world. Bayesian
inference [179, 180] or stochastic control [139] are
formal approaches to describe the emergence of prob-
ability density functions of the mapping from percep-
tion/intention to action in the presence of unavoidable
uncertainty, noise, risk and variability in the real world.
Moreover, there are probabilistic approaches that can be
used with populations of spiking neurons to produce
physical behavior in a cost-agnostic, emergent, model-free
way [72, 73, 181, 182].
Probabilistic approaches to control have their origins in

robotics, where noise, uncertainty about the state, prop-
erties of the plant, dynamics of the coupled robot-world
system, etc. have always posed challenges. One can argue
that such probabilistic models can be considered model-
free or semi-model free because there is no explicit rep-
resentation of the body or world, other than from the
statistical representation of the results of trial-and-error
experiments that inform the learning of a successful policy
(i.e., control law or motor habit) that is valid in the neigh-
borhood of some initial conditions to meet a specific goal
[169, 183].
Along these same lines, it is also possible that the con-

troller itself is ‘embedded’ in the structure of the hand.
Thus, there would be no need to regulate the manipula-
tion task, but rather that the mechanical architecture of
the hand naturally leads to adequate and versatile grasping
function.This is sometimes called embedded logic or under-
actuatedcontrol, asdescribedbelow[46, 48, 53, 106, 107, 184].

Paradoxes and insights
Under-determined vs. Over-determinedmechanics
One of the central tenets of motor control has been
the concept that the control of biological systems is
under-determined, meaning that they have ‘too many’
kinematic or muscular degrees of freedom. Therefore,

the nervous system faces a problem of selecting and
implementing a solution from among an infinite set of
choices.
Such kinematic redundancy can be demonstrated by

simple examples such as the possibility of using any one
of multiple arm trajectories to hammer the same location
in space [185], or one of multiple types of grasps to hold
the object just as well [186]. From the muscle control per-
spective, vertebrates have multiple tendons crossing each
joint, then there are multiple individual muscle forces
that can produce a given net joint torque [170]. In con-
trast, roboticists have emphasized design architectures to
reduce kinematic and actuation redundancy and typically
build robots with as few kinematic degrees of freedom or
tendons to be controllable.
This begs the question why the evolutionary process has

tended to converged on such so-called under-determined
mechanical systems for vertebrates. As reviewed in [54],
thinking of biological systems as under-determined is
paradoxical with respect to the evolutionary process
and clinical reality. For example, why would organ-
isms evolve, encode, grow, maintain, repair, and con-
trol unnecessarily many muscles when a simpler mus-
culoskeletal system would suffice, and thus, have phe-
notypical and metabolic advantages? Why do people
seek clinical treatment for measurable dysfunction even
after injury to a few muscles, or mild neuropathology?
Which muscle would you donate to improve your neural
control?
Somehow, however, many muscles are a good thing.

Given the evolutionary process, we probably have close to
the right number of muscles to allow us to produce use-
ful behavior in the real world6. One approach to explain
the apparent paradox that we have ‘too many’ muscles
in vertebrates is that every muscle expands our abili-
ties and provides an additional degree of freedom for
control. Behavior in the real world7 consists of satisfy-
ing multiple—at times competing—demands. Therefore,
a mathematical argument can be made [54] that behavior
in the real world, by virtue of needing to satisfy multiple
demands or constraints, requires multiple muscles [178].
And, by extension, that dysfunction of even a few muscles
will make the limb less versatile [187].
Similarly, kinematic redundancy loses its relevance

when we consider that limbs are actuated by muscles that
pull on tendons. It is clear that, if multiple tendons cross
each joint, then there is redundancy in the sense that mul-
tiple individual muscle forces at those tendons that can
produce a given torque. However, the same is not true
when we consider movement. The rotation of that sin-
gle joint defines the lengths of all muscles that cross it
[54, 176, 188]. While in principle muscles can go slack,
muscles with tone will shorten appropriately. However,
muscles that lengthen must do so by a prescribed amount.
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Thus, the relationship where a few joint angles and
angular velocities for a given limb movement deter-
mine the lengths and velocities of all muscles is over-
determined—the very opposite of redundant. That is, if
any one muscle that needs to lengthen to accommo-
date the movement fails to do so (because, for example,
it received the incorrect neural command or its stretch
reflex fails to be appropriately modulated in time), the
movement will be disrupted [54, 176, 188]. Therefore,
while multiple limb kinematics may be equivalent from
a task perspective (i.e., reaching a cup or throwing a
ball), they are far from equivalent from the perspective
of neurophysiological control, robustness to sensorimo-
tor noise, or time-critical modulation of activation and
reflexes [188].

Grasp vs. Manipulation
Another recent evolution in the biological side has been
the explicit distinction between grasp and manipula-
tion. Although these terms are often used interchange-
ably in the biological literature, there is a long tradi-
tion of creating clear taxonomies and descriptions of
hand actions that clearly distinguish between the two
[27, 29, 149, 189]. Specifically, grasp in general relates
to the act of seizing an object by wrapping the fingers
around it. Manipulation has a more general connotation
of imparting change to an object or process. However,
precision or dexterous manipulation is a more specific
term reserved for cases where only the fingertips make
contact with the object, not simply to grip the object,
but to be able to act independently to produce in-hand
manipulation.
Interestingly, most biological research has focused on

grasp [27, 29, 48]. Largely because studying precision or
dexterous manipulation has important practical difficul-
ties with motion capture of individual finger motions, and
measurement of individual fingertip forces. Similarly, in
spite of the mathematics of dexterous manipulation being
well developed [29], robotic hands and prostheses tend
to focus on grasp because of the difficulties in design-
ing, building, and controlling fingers and finger contacts
independently.
There have been some important advances, however.

For example, it is possible to begin to simulate con-
tact forces that go beyond physics engines for gaming
or animation [174]. Similarly, some experimental meth-
ods have been developed to quantify dynamic dexterous
manipulation, which has revealed novel aspects about the
neuromechanical control of dexterous manipulation in
development, adulthood, healthy aging and neurological
conditions (for overviews see [42, 190–194]), as well as
how the interaction between cognitive and biomechanical
factors affect dexterous manipulation performance (e.g.,
[132, 133, 195]).

Under- vs. Over-actuated control
Similarly, it is reasonable to ask to what extent the nervous
system is necessary for grasp (and perhaps even manipu-
lation). It is an analogous question to what has also been
recognized for passive dynamic walkers [196, 197]. While
effective mechanical function can be found in many, pri-
mates (and humans) are the beneficiaries of highly spe-
cialized neuroanatomical coevolution of brain and hand
(e.g., [2, 41, 198, 199]). Understanding the contributions
of a neural controller, or specific neuroanatomical areas
of the brain, to grasp and manipulate remains an active
area of study. In fact, it is critical to consider moving away
from a strictly somatotopic [200] and cortico-centric view
of manipulation, especially in the cases of dynamic dex-
terous manipulation where time delays preclude active
involvement [191].
After all, the current concept of cortical control is not

the exclusive micromanagement of individual muscle acti-
vations, but rather includes the ‘binding’ of motor neurons
into flexible, context-dependent functional groups [201–203],
the utilization of primitive ‘synergies’ prepared by net-
works of spinal interneurons [204], adjustment of sensory
feedback gains [205], and the formation/recall of motor
memories [206], to name just a few. Synergies are dis-
cussed in more detail in subsequent sections.
Nevertheless, as in the case of passive dynamic walkers,

robotics provide counterexamples to such micromanage-
ment of muscle actions by the brain, or even the nervous
system in general. A class of robotic hand designs is
called under-actuated because few motors drive multiple
degrees of freedom (this is in contrast with over-actuated
hands that have enough to control every degree of free-
dom independently). Such hands can display multiple ver-
satile grasp functions, without requiring a controller [53,
107] or even fingers [207]. Such developments are alter-
natives that promise to develop multiple designs along
the spectrum between under- and over-actuated robotic
hands. This is especially useful in cases of brain-machine
interfaces for hand prostheses, where only a few degrees
of freedom of control can be extracted from the human
pilot’s nervous system (e.g., [208]).

Learning vs. Implementation vs. Adaptation
Human sensorimotor learning has been extensively stud-
ied [80, 130]. One view posits that humans’ ability to
perform skilled motor behaviors relies on learning both
control and prediction through inverse and forward inter-
nal models (implicit, explicit, probabilistic or otherwise).
Specifically, a given control strategy generates motor com-
mands needed to create desired consequences (e.g., a
given reach trajectory or grasping an object at specific
locations), whereas prediction maps motor commands
(i.e., efference copy) into expected sensory consequences
(e.g., object contact or onset of acceleration at object lift
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off [209, 210]). The mechanisms proposed to account for
updating of these internal models may or may not include
errors that would occur when a mismatch between sensed
and predicted sensory outcome occur, i.e., error-based
learning (e.g., [211–213]) and use-dependent learning
(e.g., [214–217]). However, most of what we know about
human sensorimotor learning for reach has been derived
from studies of reaching movements over distances of ±
10—14 cm, and their adaptations to force fields or visuo-
motor rotations. Relatively little is known about mecha-
nisms underlying sensorimotor learning of grasping and
manipulation.
We have known for decades that finger force control

used in previous manipulation can influence how forces
are coordinated on the current manipulation through the
memory of an object’s physical properties [81, 82, 218].
More recently, it has been shown that humans may
acquire and retain multiple internal representations of
manipulation [219, 220]. Later studies provided further
evidence supporting the concept of multiple sensorimotor
mechanisms and how their different time scalesmay inter-
fere with generalization or retrieval of previously learned
manipulation [221]—even when the object being manipu-
lated is the same. A recent study has provided evidence for
the co-existence of context-dependent and independent
learning processes [195], which would operate similarly
to those described for adaptation of reaching movements
[222]. The advantage of context-dependent representa-
tions of manipulation is that they can be recalled when
the object has strong contextual cues (i.e., object geome-
try and perhaps other perceptual attributes). In contrast,
context-independent representations are more sensitive
to the practice schedule used to learn a given manipu-
lation, but might be particularly advantageous when the
upcoming context has no context cues. That is, in the
absence of information to the contrary, it is preferable to
repeat the most recent manipulation strategy even though
it is not guaranteed to be the correct one.
Whenconsidering parallels between the above-described

framework for learning of dexterous manipulation in
humans with learning manipulation by robotics systems,
it has been suggested that artificial controllers could take
advantage of select features of the biological framework.
Specifically, and as reviewed in [223], multiple parallel
learning mechanisms could benefit robotic learning of
manipulation tasks to afford to deal with structured and
unstructured environments. At the same time, the detri-
mental effects or interference of neural representation
built through learning in one manipulation context, and
then transferring it to another context can be theoreti-
cally minimized or bypassed when designing an artificial
controller. Some examples of successful robotic learn-
ing for grasp and manipulation show that this is possible
[172, 173, 224, 225]. Of course, these theoretical conside-

rations assume that building multiple representations of
learned manipulations allows them to operate indepen-
dently, something that—as described above—clearly also
challenges biological controllers.
Another biologically inspired phenomenon that could

be of value to robotic manipulators is finger force-to-
position modulation. Briefly, it has been shown that
humans are able to modulate manipulative forces in an
anticipatory fashion, i.e., between contact and onset of
manipulation, according to where the object is grasped
[132, 133]. This phenomenon, which has been confirmed
by several studies [134–136, 226], ensures attainment of
the manipulation goal despite trial-to-trial variability in
finger placement that may naturally occur while using
the same or different number of fingers ([132] and [133],
respectively). Finger force-to-position modulation is a
phenomenon that is very useful for inferring its underly-
ing neural control mechanisms. Specifically, for humans
to be able to adjust finger forces as a function of vari-
able position, a ‘high-level’ representation of the task (e.g.,
a given compensatory torque) is required, rather than
learning a fixed finger force distribution. Additionally,
such high-level representation has to drive how sensing
of the relative position of the fingers is used to imple-
ment the appropriate finger force distribution by the time
the learned manipulation is initiated. As finger force-to-
position modulation affords biological systems to be very
adaptive—a given manipulation can be performed with-
out having to grasp an object exactly in the same way each
time it is being manipulated—one can envision important
robotics applications. These include controllers that are
designed to build, through extensive training, the high-
level representation of a task performed in many different
ways. If such high-level representation could be built,
stored, retrieved, and designed to interact with artificial
sensing of finger positions, such a controller should the-
oretically be able to be adaptable to manipulators that
differ in terms of number of joints or fingers. Such a
controller could be shared by multiple representations
learned through training of manipulation in structured
and unstructured contexts.
Another important distinction to be made is that, as

roboticists, we marvel at the learned capabilities of bio-
logical systems. However, we tend to forget how difficult
it is for organisms to learn and maintain that level of
performance. Recent work has begun to elucidate why
learning to produce accurate, smooth and repeatable
movements takes immense amounts of practice even in
typically developing children [227], why so few of us can
become elite musicians or athletes [228], and why reha-
bilitation requires very intensive practice [229]. That is,
controlling our bodies is not as easy as it appears. We are
seeing the result of millennia of co-evolution and years
of development, training and learning. Moreover, in the
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case of manipulation, we have co-evolved environments,
objects and tools to match the capabilities of our hands.
The design of airplane cockpits, left- and right-handed
scissors, frets in string instruments, the key system in
clarinets, and touch screens are but a few examples.
Thus, biological hands in particular have an unfair

advantage over robotic hands and prosthetics. Engineers
should explicitly begin to decide what functionality and
control to embed in the mechanics of the system, what
control algorithms to use for learning vs. standard per-
formance vs. elite performance vs. adaptation. It is not
unreasonable to propose that robotic hands, once built,
should undergo a developmental learning process (a
‘robot kindergarten?’) to learn the specific control algo-
rithms, motor habits, and statistically useful anticipatory
strategies defined by their intended use or—in the case
of prosthetics—the environment, job and preferences of
their human pilot. Insisting on a one-size-fits-all, real-
time control approach to robotic hands has been shown
to be overly ambitious, and even unnecessary as demon-
strated by the capabilities of the under-actuated hands
mentioned above (e.g., [46, 107]), as well as grippers with
no fingers at all [207]. Some salient examples of such
learning (and re-learning) come from [230–232].

Prescriptive vs. Descriptive synergies
What are the debates in the study of synergies in biolog-
ical systems? A root cause of the debates is the nature of
scientific inference based on experimental observations.
The fact that experimental recordings detect dimension-
ality reduction is not surprising because sensorimotor
control must, by definition, select motor actions from
the low-dimensional subspace of feasible actions [177].
Therefore, disambiguating prescriptive synergies of neural
origin (those that are prescribed by the nervous system as
a control strategy) from descriptive synergies (those that
describe the expected dimensionality reduction) is diffi-
cult [48, 177]. Thus, the main question is not whether the
nervous system inhabits a low-dimensional solution space
to perform tasks, but rather how it does so [177, 233–235].
Moreover, although several tasks can share the same gen-
eral features captured by such dimensionality reduction,
it is perhaps the fine details particular to each task that
maybe critical to their performance [48].
Biological ‘controllers’ co-evolved with mechanical sys-

tems whose operations are characterized by a very large
number of elements—e.g., motor units, muscles, and
joints—while relying on their spatiotemporal coordina-
tion and adaptability to task demands. The refinements
afforded by such evolution can be appreciated when
examining the efficacy of the neural control of sev-
eral complex motor behaviors, including but not lim-
ited to speech production, locomotion, and manipulation.

When examined in detail, researchers were surprised and
intrigued to see that those functionally complex behav-
iors that involve the control of many variables (like the
20+ angles for the joints of all fingers) in reality evolve
in a lower-dimensional space (i.e., can be well approxi-
mated by roughly 5 variables) [47]. Such motor synergies
have also been observed in the phase-locked coordination
(or correlated action) of multiple muscles that produce
complex behaviors [236–238]
The theoretical framework of synergies has been exten-

sively used and tested to account for the nervous system’s
ability to control multiple muscles and multi-joint move-
ments (for reviews see [239–241]). Synergies would oper-
ate by constraining the spatial and temporal activation of
multiple muscles. Therefore, the existence of consistent
covariation patterns in electromyographic (EMG) activ-
ity or joint excursions, whose structure can be spatially
and/or temporally modulated according to task require-
ments, would be compatible with the synergy framework.
Synergies have also been used as a framework to under-
stand pathological coordination of movement (for reviews
see [242, 243]). However, longstanding issues remain
regarding the extent to which synergies can be considered
‘fixed’ building blocks of movements, the extent to which
they are modifiable as a function of task demands, adap-
tation and perceptual context, as well as their very role in
facilitating sensorimotor learning in tasks thatmay benefit
from, or be penalized by a synergy-like control structure
[150] (for a review see [244]).
When considering the biomechanics of hand muscles,

the existence of anatomical constraints would support
synergistic actions of the fingers. These constraints can
come from, for example, finger muscle-tendon complexes
spanning several joints and passive linkages among ten-
dons [199]. Such synergistic actions have been described
as subject-independent finger kinematic patterns for
grasping [47, 245] (for review see [244]), as well as cou-
pling of finger movement or forces among non-instructed
fingers when humans are asked to move or exert force
with one finger [246, 247] (for review see [198]). Early
attempts to define the control of individuated finger forces
in cortical neuron activity revealed a much more complex
picture characterized by broadly distributed activity [248].
More recent work in non-human primates, however, sup-
ports an organization of cortical activity that is compatible
with the synergy framework [249]. When searching for
neural correlates of synergies in humans, a recent study
revealed that the cortical representation of hand postures
can be better accounted for by using a synergy-based net-
work than somatotopic or muscle-based models [250],
which is compatible with the view of cortical organiza-
tion of finger movement being shaped by habitual use
[251], and even goal equivalence in finger actions being
implemented at a cortical level [252].
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Many studies have attempted to identify synergies at dif-
ferent levels of biological systems and species, including
primarymotor cortex [250], spinal cord [253], motor units
[254–256], motion [47, 257], and forces [258–260]. How-
ever, the functional role of synergies has been debated for
decades, partly due to the fact that the operational def-
inition of synergies can vary significantly depending on
several factors, including the level of the system at which
they are analyzed, the methods used to quantify them,
and the tasks used to prove or negate their existence (as
discussed in [244]; see also [261]). Among the conceptual
frameworks that have been proposed, synergies would
be instrumental in reducing the number of independent
degrees of freedom that the nervous system has to con-
trol as originally proposed by Bernstein [185], or ensuring
attainment of task goals by minimizing the variance that
would be detrimental to performance [237, 262, 263]. An
alternative interpretation of the role of synergies, however,
points out the difficulty of interpreting synergies as the
root cause of multi-muscle coordination or a byproduct
of mechanical interactions between the biological system
and the environment [235].
Robotics, in contrast, synthetically designs, assembles

and operates engineered systems where synergies can be
prescribed. Over the past two decades, roboticists have
exploited the concept of (prescriptive) synergies to design
robotic hands (for review see [261]). Examples of these
designs include the Pisa/IIT SoftHand [46], whose design
was based on the kinematic synergies extracted from
grasping a set of imagined objects [47], as well as devices
to constrain motion of human fingers for rehabilitation of
sensorimotor function [264]. Here, the underlying design
motivation is to capture human-like kinematic features,
i.e, simultaneous motion of all fingers, by using a signif-
icantly smaller number of actuators than joints. Prelimi-
nary clinical applications of this approach for prosthetic
applications have shown that individuals with upper limb
loss can quickly adopt such synergy-based design with
minimal training [265]. A major goal and challenge for
robotic grasping and manipulation is the implementation
of force control using kinematic synergies. The results of
computational modeling suggest that the first few hand
postural synergies may play an important role for attain-
ing force closure [266]. Nevertheless, it remains to be
investigated the extent to which robotic motion-to-force
transition can fully leverage a synergy-based motion-to-
force coordination. Experimental evidence and theoretical
frameworks developed by studies of human multi-finger
synergies might potentially be used to inspire a hierar-
chical control of high- and low-level grasp variables (i.e.,
task goal and distribution of individual fingertip forces,
respectively) [133], as well as ‘default’ vs. task-dependent
modulation of fingertip force distributions [259]. Never-
theless, a major challenge, both from neuroscientific and

robotic perspective, is evaluating the role of sensory feed-
back elicited by object contact and force production on
the coordination of multiple (human and robotic) fingers.

Conclusions
The literature on the biological and robotic approaches
to grasp and manipulation is large, and has experienced
exponential growth in the past two decades. The rein-
vigorated interest in this topic has come, as in past con-
flicts, from governments attending to wounded soldiers
and civilians who survive traumatic loss of limbs (e.g.,
the DARPA program to Revolutionize Prosthetics), from
the need to improve the quality of life of individuals
with stroke, cerebral palsy and other neurological con-
ditions that now have greater survival rates, and from
recent advances in autonomous and humanoid robots
for whom manipulation remains a litmus test for perfor-
mance. A positive feature of the latest developments has
been the greater and fruitful cross-fertilization between
biology and robotics approaches. It is no longer an aber-
ration to have engineers who are well versed in neuro-
science working in robotics or neuroscience, or neuro-
scientists who are well versed in engineering working on
scientific problems or robotics. This greater interaction
across fields, however, has the added burden of need-
ing to understand and keep current on two vast and
rapidly growing fields—which has led to confusion of
terms and principles, duplication of efforts, loss of nuance
in translation, and lack of familiarity with fundamental
concepts.
Thus, our goal here is to provide researchers work-

ing in these fields the briefest of overviews of advances
(conceptual and material), pitfalls, and open questions. In
particular, we aimed to provide specific examples to clar-
ify when and why a better understanding of the biology
of grasp and manipulation would benefit robotic grasp-
ing and manipulation. Namely, the evolutionary process
has yielded organisms that can produce versatile func-
tion even when cherished engineering principles are not
present and biological systems operate well in spite of
having noise, delays, nonlinearities, etc. There are many
lessons learned, described above, such as hierarchical and
open-loop control, morphology that simplifies the control
problem, the utility of having multiple muscles, etc. Con-
versely, engineering thinking has provided well-founded
principles of mechanics, mathematics and control engi-
neering to aid the scientific work aimed at understanding
the abilities of human hand. Some salient points are:

• Deductive vs. synthetic science
Engineering approaches to understand biology—and
biology as an inspiration to engineering—have gener-
ated a rich repertoire of experimental and theoretical
advances in both areas. However, it is important to be
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aware of fundamental differences and inherent limi-
tations of scientific vs. synthetic approaches. It is the
recognition of these differences that needs to guide
work in each field and in their interactions. This will
allow those interactions to be as fruitful as possible.

• Redundancy
The mathematics of robotics has contributed greatly
to our ability to study biological limbs and hands.
Unfortunately, the joint-torque formulation—while
valid and correct—can oversimplify the nature of the
problem that confronts the nervous system. At its
core, the control problem the nervous system faces is
one of linear actuators (muscles) that can only actively
pull on tendons. We have revisited the redundancy
problem while also emphasizing that the control of
forces is distinct from the control of movements.
This has allowed us to clarify many aspects of bio-
logical function and dysfunction. For example, it is
now clear that muscle redundancy to produce a set
of net joint torques is not as great as once thought.
This is because the set of feasible muscle activa-
tions has a very strong structure. Similarly, kinematic
redundancy is greatly constrained because different
movement are not entirely equivalent. From the per-
spective of muscle excursions and the regulation of
stretch reflexes, each natural movement in fact rep-
resents an over-determined problem (the opposite of
redundant), where muscle activations and reflex mod-
ulation must follow very specific spatiotemporal pat-
terns. This all begins to explain why it is so difficult
to learn to use our limbs and hands (i.e., it takes years
of practice), why dysfunction arises even from minor
neuromuscular damage, why rehabilitation is so dif-
ficult, and why limbs have evolved to have ‘so many’
muscles. Roboticists can use these lessons to revisit
their design specifications, which often prefer torque
motors or a sparse architecture where each joint is
controlled by two dedicated tendons.

• From motor towards sensorimotor
Sensory feedback plays critical roles in human grasp
andmanipulation for building internal representations
that are considered critical for predicting sensory con-
sequences of hand-object interactions; and for online
sensing of those interactions. This dual nature of sen-
sory feedback (e.g., exploration-exploitation learning-
execution) is particularly challenging to capture in
robotics. From the technical perspective, replicating
human tactile function has proven difficult, although
there have been recent advances not only in sensor
hardware development; but also in the expansion of
prostheses to explicitly add hand proprioception and
touch interfaces (i.e., DARPA’s HAPTIX program).
But equally important, the field has begun to recog-
nize that the use and sensory function may change as

the learning process evolves. Thus, as in biological sys-
tems, on-line monitoring and processing of sensory
information is necessary at first, but can actually be
counterproductive and slow down performance once
learning has stabilized. Thus, hierarchical, distributed
and state-dependent gating, processing and use of sen-
sory information is yet to be well understood in human
hands, and should be a goal of robotic systems.

• Grasp is not manipulation
Grasp and dexterous manipulation, although often
used interchangeably in neuroscience literature, are
fundamentally different and challenge biological and
robotic controllers in unique ways. In robotics,
greater advances have been made in grasping than
manipulation. Some important advances are being
made to understand and implement the ability of
fingertips to produce motion-to-force transitions,
force-to-position modulation, and in-hand object
re-orientation/re-configuration, mostly in simulation
[267, 268]. The challenge is now how to design
and build robotic hands with the mechanical, motor
and sensory abilities to implement those behaviors.
This is a very promising and necessary direction for
research. On the biological front, the new approaches
to understand dynamic dexterous manipulation with
the fingertips allows the quantification of perfor-
mance. But more importantly, those findings chal-
lenge the dominant cortico-centric view of manipu-
lation, and highlight the importance of considering
subcortical, spinal and neuromechanical contributors.
This further motivates the exploration of hierarchical
and distributed mechanisms that allow such versa-
tile capabilities in the presence of delays, noise and
uncertainty. Such evolution in our thinking promises
to revolutionize our understanding of the mecha-
nisms that enable healthy function, explain disability,
and inform rehabilitation. Combining future develop-
ments along these parallel lines of work also promises
important developments in the evolution of the design
and control of robotic and prosthetic hands.

• Neuromorphic vs. neuromimetic
Unlike neuromimetic approaches aimed at capturing
aspects of neural function without biological struc-
tures or processes, neuromorphic approaches seek to
replicate (to the extent possible) the biological com-
ponents and mechanisms at a particular scale. This
allows us to ask whether and how neuromechanical
function can emerge without being defined a priori.
This allows us to understand the extent to which
the implementation of the structures and processes
(i.e., spiking neurons, delayed transmissions, mus-
cle nonlinearities) define and contribute to function,
and the different presentations of dysfunction. Thus,
neomorphism is proposed as a means to reconcile
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engineering and biology, as well as accelerate their
cross-fertilization.

• Prescriptive vs. descriptive synergies
Synergies have been defined and studied by neuro-
scientists as building blocks of complex movements
based on observations made at different levels of the
neuromuscular system. Although their fundamental
characteristics and functional role remain to be estab-
lished, the concept of synergies has inspired robotic
and prosthetic hand design not only to simplify con-
trol, but also to capture human-like motion features—
being particularly important for assistive technologies
where there are few degrees of freedom for control and
the prosthetics are underactuated. From the concep-
tual perspective, however, it is important that we rec-
ognize that the execution of a task will always exhibit
dimensionality reduction in the control, kinetic and
kinematic variables because they are, by definition,
inhabiting the subspace of feasible actions that sat-
isfy the constraints that define the task. Therefore, it
is to be expected that (descriptive) synergies will be
detected when studying function. Nevertheless, inter-
esting, valid and open questions remain in our under-
standing of whether and how the healthy and damaged
nervous system implements (prescriptive) synergies to
inhabit those subspaces (i.e., the feasible activation
manifold for a given task).

It is our hope and expectation that these recent con-
ceptual clarifications, advances and newly-defined open
problems will accelerate our understanding of healthy and
pathologic hand function (and biological function in gen-
eral), and will catalyze the creation of truly versatile and
dexterous robotic hands and prostheses.

Endnotes
1Quoted from [269]: ‘Deductive reasoning (top-down

logic) contrasts with inductive reasoning (bottom-up
logic) in the following way: In deductive reasoning, a con-
clusion is reached reductively by applying general rules
that hold over the entirety of a closed domain of dis-
course, narrowing the range under consideration until
only the conclusion(s) is left.’. Conversely [270], ‘Inductive
reasoning is reasoning in which the premises are viewed
as supplying strong evidence for the truth of the con-
clusion. While the conclusion of a deductive argument
is certain, the truth of the conclusion of an inductive
argument may be probable, based upon the evidence
given [271].’

2 A note on nomenclature. This does not mean a potted
houseplant. This term comes from control engineering

where the process to be controlled was usually an indus-
trial or manufacturing plant.

3 This was found written on his blackboard at the time of
his death in February 1988, https://archives.caltech.edu/
pictures/1.10-29.jpg. It is thought he meant to suggest
that one should only use mathematical concepts one has
derived, and therefore proven, to oneself.

4Other important forms of active learning are active
vision and saccades in mammalian vision [272].

5One can argue that work in invertebrates or locomo-
tor patterns in vertebrates has been more successful, e.g.,
[273–275].

6Note that this is not an argument for optimality of
anatomical architecture, but only for sufficiency.

7Also called neuroethology to distinguish it from reduc-
tionist laboratory work [238, 276].
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